論文の概要: Binned semiparametric Bayesian networks
- arxiv url: http://arxiv.org/abs/2506.21997v1
- Date: Fri, 27 Jun 2025 08:07:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-30 21:12:23.12982
- Title: Binned semiparametric Bayesian networks
- Title(参考訳): 結合半パラメトリックベイズネットワーク
- Authors: Rafael Sojo, Javier Díaz-Rozo, Concha Bielza, Pedro Larrañaga,
- Abstract要約: 本稿では,カーネル密度推定の計算コストを削減するために,データ結合を利用した確率的半パラメトリックモデルを提案する。
新しい双対半パラメトリックベイズネットワークに対して,2つの条件付き確率分布が開発された。
- 参考スコア(独自算出の注目度): 3.6998629873543125
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a new type of probabilistic semiparametric model that takes advantage of data binning to reduce the computational cost of kernel density estimation in nonparametric distributions. Two new conditional probability distributions are developed for the new binned semiparametric Bayesian networks, the sparse binned kernel density estimation and the Fourier kernel density estimation. These two probability distributions address the curse of dimensionality, which typically impacts binned models, by using sparse tensors and restricting the number of parent nodes in conditional probability calculations. To evaluate the proposal, we perform a complexity analysis and conduct several comparative experiments using synthetic data and datasets from the UCI Machine Learning repository. The experiments include different binning rules, parent restrictions, grid sizes, and number of instances to get a holistic view of the model's behavior. As a result, our binned semiparametric Bayesian networks achieve structural learning and log-likelihood estimations with no statistically significant differences compared to the semiparametric Bayesian networks, but at a much higher speed. Thus, the new binned semiparametric Bayesian networks prove to be a reliable and more efficient alternative to their non-binned counterparts.
- Abstract(参考訳): 本稿では,非パラメトリック分布におけるカーネル密度推定の計算コストを削減するために,データ結合を利用した確率的半パラメトリックモデルを提案する。
新しい双対半パラメトリックベイズネットワーク,スパース双対カーネル密度推定,フーリエカーネル密度推定のための2つの新しい条件確率分布を開発した。
これらの2つの確率分布は、通常双対モデルに影響を与える次元の呪いに対処し、スパーステンソルを使用し、条件付き確率計算において親ノードの数を制限する。
提案手法を評価するため,UCI Machine Learningレポジトリから合成データとデータセットを用いて,複雑性解析を行い,比較実験を行った。
実験には、異なるバイナリルール、親の制限、グリッドサイズ、モデルの振舞いの全体像を得るためのインスタンスの数が含まれる。
その結果, 半パラメトリックベイズネットワークは, 半パラメトリックベイズネットワークと比較して統計的に有意な差はなく, より高速な構造学習と対数類似度推定を実現することができた。
したがって、新しい双対半パラメトリックベイズネットワークは、その非双対に対する信頼性とより効率的な代替手段であることが証明される。
関連論文リスト
- Mixture models for data with unknown distributions [0.6345523830122168]
実数値多変量データに対する混合モデルの幅広いクラスを記述・解析する。
データの分割と分布の推定の両方を返却し、クラスタリングと密度推定を各クラスタ内で同時に効果的に行う。
提案手法を図解的アプリケーション選択で実証し,両アルゴリズムをコードで実装する。
論文 参考訳(メタデータ) (2025-02-26T22:42:40Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Learning Likelihood Ratios with Neural Network Classifiers [0.12277343096128711]
確率比の近似は、ニューラルネットワークベースの分類器の巧妙なパラメトリゼーションを用いて計算することができる。
本稿では、いくつかの共通損失関数の性能と分類器出力のパラメトリゼーションを詳述した一連の実証研究について述べる。
論文 参考訳(メタデータ) (2023-05-17T18:11:38Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
バイナリ密度比推定(DRE)は多くの最先端の機械学習アルゴリズムの基礎を提供する。
ブレグマン最小化の発散の観点から一般的な枠組みを開発する。
我々のフレームワークはバイナリDREでそれらのフレームワークを厳格に一般化する手法に導かれることを示す。
論文 参考訳(メタデータ) (2021-12-07T01:23:20Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
構造生成モデル (Structured Generative Model, SGM) と呼ばれる新しい生成モデルフレームワークが提案され, 簡単な最適化が可能となった。
この実装では、無限のガウス混合モデルを学習するために適合した単一白色ノイズ源への正則入力によって駆動される1つのニューラルネットワークを採用している。
予備的な結果は、SGMがデータ効率と分散、従来のガウス混合モデルと変分混合モデル、および敵ネットワークのトレーニングにおいてMINE推定を著しく改善することを示している。
論文 参考訳(メタデータ) (2021-10-12T07:44:18Z) - Bias-Variance Tradeoffs in Single-Sample Binary Gradient Estimators [100.58924375509659]
ストレートスルー (ST) 推定器はその単純さと効率性から人気を得た。
計算の複雑さを低く保ちながら、STよりも改善するいくつかの手法が提案された。
我々は、トレードオフを理解し、元来主張された特性を検証するために、これらの手法のバイアスとばらつきの理論解析を行う。
論文 参考訳(メタデータ) (2021-10-07T15:16:07Z) - Semiparametric Bayesian Networks [5.205440005969871]
パラメトリックおよび非パラメトリック条件付き確率分布を組み合わせた半パラメトリックベイズネットワークを提案する。
彼らの目的は、パラメトリックモデルの有界複雑性と非パラメトリックモデルの柔軟性を統合することである。
論文 参考訳(メタデータ) (2021-09-07T11:47:32Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。