論文の概要: Experimental quantum reservoir computing with a circuit quantum electrodynamics system
- arxiv url: http://arxiv.org/abs/2506.22016v1
- Date: Fri, 27 Jun 2025 08:31:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-30 21:12:23.13851
- Title: Experimental quantum reservoir computing with a circuit quantum electrodynamics system
- Title(参考訳): 回路量子電気力学システムを用いた実験量子貯水池計算
- Authors: Baptiste Carles, Julien Dudas, Léo Balembois, Julie Grollier, Danijela Marković,
- Abstract要約: 量子貯水池コンピューティングは、他の量子ニューラルネットワークモデルと比較してトレーニングの容易さを提供する機械学習フレームワークである。
本稿では,回路量子電気力学アーキテクチャに基づく新しい量子貯水池計算プラットフォームを提案し,実験的に実装する。
我々の研究は、ハードウェア効率のよい量子ニューラルネットワークの実装を示し、他の量子機械学習モデルにさらにスケールアップして一般化することができる。
- 参考スコア(独自算出の注目度): 0.9786690381850356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum reservoir computing is a machine learning framework that offers ease of training compared to other quantum neural network models, as it does not rely on gradient-based optimization. Learning is performed in a single step on the output features measured from the quantum system. Various implementations of quantum reservoir computing have been explored in simulations, with different measured features. Although simulations have shown that quantum reservoirs present advantages in performance compared to classical reservoirs, experimental implementations have remained scarce. This is due to the challenge of obtaining a large number of output features that are nonlinear transformations of the input data. In this work, we propose and experimentally implement a novel quantum reservoir computing platform based on a circuit quantum electrodynamics architecture, consisting of a single cavity mode coupled to a superconducting qubit. We obtain a large number of nonlinear features from a single physical system by encoding the input data in the amplitude of a coherent drive and measuring the cavity state in the Fock basis. We demonstrate classification of two classical tasks with significantly smaller hardware resources and fewer measured features compared to classical neural networks. Our experimental results are supported by numerical simulations that show additional Kerr nonlinearity is beneficial to reservoir performance. Our work demonstrates a hardware-efficient quantum neural network implementation that can be further scaled up and generalized to other quantum machine learning models.
- Abstract(参考訳): 量子サーブレットコンピューティングは、勾配ベースの最適化に依存しないため、他の量子ニューラルネットワークモデルと比較してトレーニングの容易さを提供する機械学習フレームワークである。
学習は、量子システムから測定された出力特性の1ステップで実行される。
量子貯水池計算の様々な実装は、異なる特徴を持つシミュレーションで検討されている。
シミュレーションでは、量子貯水池は古典的な貯水池に比べて性能に利点があることが示されているが、実験的な実装は乏しい。
これは、入力データの非線形変換である多数の出力特徴を取得することの難しさによるものである。
本研究では,超伝導量子ビットに結合した単一空洞モードからなる回路量子力学アーキテクチャに基づく新しい量子貯水池計算プラットフォームを提案し,実験的に実装する。
我々は、コヒーレントドライブの振幅で入力データを符号化し、フォックベースでキャビティ状態を測定することにより、単一の物理システムから多数の非線形特徴を得る。
従来のニューラルネットワークと比較して,ハードウェアリソースが大幅に小さく,特徴が少ない2つの古典的タスクの分類を実証する。
実験結果は,Kerrの非線形性の追加が貯水池性能に有益であることを示す数値シミュレーションによって支持された。
我々の研究は、ハードウェア効率のよい量子ニューラルネットワークの実装を示し、他の量子機械学習モデルにさらにスケールアップして一般化することができる。
関連論文リスト
- Minimal Quantum Reservoirs with Hamiltonian Encoding [72.27323884094953]
ハミルトニアン符号化に基づく量子貯水池計算のための最小限のアーキテクチャについて検討する。
このアプローチは、一般的に量子機械学習に関連する実験的なオーバーヘッドの多くを回避します。
論文 参考訳(メタデータ) (2025-05-28T16:50:05Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Information-driven Nonlinear Quantum Neuron [0.0]
本研究では,オープン量子システムとして動作するハードウェア効率の高い量子ニューラルネットワークを提案する。
入力量子情報のパラメトリゼーションが容易な繰り返し相互作用に基づくこの散逸モデルが、微分可能非線形活性化関数を示すことを示す。
論文 参考訳(メタデータ) (2023-07-18T07:12:08Z) - Quantum reservoir neural network implementation on coherently coupled
quantum oscillators [1.7086737326992172]
本稿では,多数の高密度結合ニューロンを得る量子貯水池の実装を提案する。
超伝導回路に基づく特定のハードウェア実装を解析する。
ベンチマークタスクでは99 %の最先端の精度が得られる。
論文 参考訳(メタデータ) (2022-09-07T15:24:51Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
量子コンピュータ上での単位ステップ関数の形で非線形性を近似するための振幅に基づく実装を提案する。
より先進的な量子アルゴリズムに埋め込まれた場合、古典的コンピュータから直接入力を受ける2つの異なる回路タイプを量子状態として記述する。
論文 参考訳(メタデータ) (2022-06-07T07:14:12Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
本資料は、ハイブリッド量子古典ニューラルネットワークのトレーニングと性能に関する実験結果を含む。
シミュレーションは時間を要するが、量子ネットワークは時間を要するが、古典的なネットワークを克服する。
論文 参考訳(メタデータ) (2021-08-19T18:49:30Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。