Cardiovascular disease classification using radiomics and geometric features from cardiac CT
- URL: http://arxiv.org/abs/2506.22226v1
- Date: Fri, 27 Jun 2025 13:43:05 GMT
- Title: Cardiovascular disease classification using radiomics and geometric features from cardiac CT
- Authors: Ajay Mittal, Raghav Mehta, Omar Todd, Philipp Seeböck, Georg Langs, Ben Glocker,
- Abstract summary: We break down the CVD classification pipeline into three components: (i) image segmentation, (ii) image registration, and (iii) downstream CVD classification.<n>Specifically, we utilize the Atlas-ISTN framework and recent segmentation foundational models to generate anatomical structure segmentation and a normative healthy atlas.<n>Our experiments on the publicly available ASOCA dataset show that utilizing these features leads to better CVD classification accuracy (87.50%) when compared against classification model trained directly on raw CT images (67.50%)
- Score: 14.254217534681997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic detection and classification of Cardiovascular disease (CVD) from Computed Tomography (CT) images play an important part in facilitating better-informed clinical decisions. However, most of the recent deep learning based methods either directly work on raw CT data or utilize it in pair with anatomical cardiac structure segmentation by training an end-to-end classifier. As such, these approaches become much more difficult to interpret from a clinical perspective. To address this challenge, in this work, we break down the CVD classification pipeline into three components: (i) image segmentation, (ii) image registration, and (iii) downstream CVD classification. Specifically, we utilize the Atlas-ISTN framework and recent segmentation foundational models to generate anatomical structure segmentation and a normative healthy atlas. These are further utilized to extract clinically interpretable radiomic features as well as deformation field based geometric features (through atlas registration) for CVD classification. Our experiments on the publicly available ASOCA dataset show that utilizing these features leads to better CVD classification accuracy (87.50\%) when compared against classification model trained directly on raw CT images (67.50\%). Our code is publicly available: https://github.com/biomedia-mira/grc-net
Related papers
- Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement [61.573750959726475]
We consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks that may be supported via semantic segmentation models.<n>We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans.
arXiv Detail & Related papers (2025-07-22T13:24:45Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.<n>Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.<n>Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - High Accuracy Pulmonary Vessel Segmentation for Contrast and Non-contrast CT Images and Clinical Evaluation [7.2151442883882]
We propose a 3D image segmentation algorithm for automated pulmonary vessel segmentation from both contrast-enhanced and non-contrast CT images.<n>We used 427 sets of high-precision annotated CT data from multiple vendors and countries to train the model and achieved Cl-DICE, Cl-Recall, and Recall values of 0.892, 0.861, 0.924 for PulmonaryA data and 0.925, 0.903, 0.949 for NCCT data.
arXiv Detail & Related papers (2025-03-21T09:54:42Z) - A Classification-Based Adaptive Segmentation Pipeline: Feasibility Study Using Polycystic Liver Disease and Metastases from Colorectal Cancer CT Images [0.261201916989931]
The purpose of this study is to explore the feasibility of building a workflow to efficiently trained segmentation models.
By implementing a deep learning model to automatically classify the images and route them appropriate segmentation models, we hope our workflow can segment the images with different pathology accurately.
arXiv Detail & Related papers (2024-05-02T18:05:37Z) - Coronary artery segmentation in non-contrast calcium scoring CT images
using deep learning [2.2687766762329886]
We introduce a deep learning algorithm for segmenting coronary arteries in non-contrast cardiac CT images.
We propose a novel method for manual mesh-to-image registration, which is used to create our test-GT.
The experimental study shows that the trained model has significantly higher accuracy than the GT used for training, and leads to the Dice and clDice metrics close to the interrater variability.
arXiv Detail & Related papers (2024-03-04T23:40:02Z) - Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
Medical image segmentation aims to identify and locate abnormal structures in medical images, such as chest radiographs, using deep neural networks.
Our work collects explanations from well-trained classifiers to generate pseudo labels of segmentation tasks.
We then use Integrated Gradients (IG) method to distill and boost the explanations obtained from the classifiers, generating massive diagnosis-oriented localization labels (DoLL)
These DoLL-annotated images are used for pre-training the model before fine-tuning it for downstream segmentation tasks, including COVID-19 infectious areas, lungs, heart, and clavicles.
arXiv Detail & Related papers (2024-01-16T16:18:42Z) - A 3D deep learning classifier and its explainability when assessing coronary artery disease [2.749052158388996]
Early detection and diagnosis of coronary artery disease could save lives and reduce healthcare costs.<n>Most current approaches utilise deep learning methods but require centerline extraction and multi-planar reconstruction.<n>Our proposed approach outperforms the state-of-the-art models by 21.43% in terms of classification accuracy.
arXiv Detail & Related papers (2023-07-29T14:54:50Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.