Test-Time Consistency in Vision Language Models
- URL: http://arxiv.org/abs/2506.22395v1
- Date: Fri, 27 Jun 2025 17:09:44 GMT
- Title: Test-Time Consistency in Vision Language Models
- Authors: Shih-Han Chou, Shivam Chandhok, James J. Little, Leonid Sigal,
- Abstract summary: Vision-Language Models (VLMs) have achieved impressive performance across a wide range of multimodal tasks.<n>Recent benchmarks, such as MM-R3, highlight that even state-of-the-art VLMs can produce divergent predictions across semantically equivalent inputs.<n>We propose a simple and effective test-time consistency framework that enhances semantic consistency without supervised re-training.
- Score: 26.475993408532304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language Models (VLMs) have achieved impressive performance across a wide range of multimodal tasks, yet they often exhibit inconsistent behavior when faced with semantically equivalent inputs, undermining their reliability and robustness. Recent benchmarks, such as MM-R3, highlight that even state-of-the-art VLMs can produce divergent predictions across semantically equivalent inputs, despite maintaining high average accuracy. Prior work addresses this issue by modifying model architectures or conducting large-scale fine-tuning on curated datasets. In contrast, we propose a simple and effective test-time consistency framework that enhances semantic consistency without supervised re-training. Our method is entirely post-hoc, model-agnostic, and applicable to any VLM with access to its weights. Given a single test point, we enforce consistent predictions via two complementary objectives: (i) a Cross-Entropy Agreement Loss that aligns predictive distributions across semantically equivalent inputs, and (ii) a Pseudo-Label Consistency Loss that draws outputs toward a self-averaged consensus. Our method is plug-and-play and leverages information from a single test input itself to improve consistency. Experiments on the MM-R3 benchmark show that our framework yields substantial gains in consistency across state-of-the-art models, establishing a new direction for inference-time adaptation in multimodal learning.
Related papers
- Advancing Reliable Test-Time Adaptation of Vision-Language Models under Visual Variations [67.35596444651037]
Vision-language models (VLMs) exhibit remarkable zero-shot capabilities but struggle with distribution shifts in downstream tasks when labeled data is unavailable.<n>We propose a Reliable Test-time Adaptation (ReTA) method that enhances reliability from two perspectives.
arXiv Detail & Related papers (2025-07-13T05:37:33Z) - Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions [8.069858557211132]
Large Language Models (LLMs) have shown remarkable capabilities across various tasks.<n>Their deployment in high-stake domains requires consistent and coherent behavior across multiple rounds of user interaction.<n>This paper introduces a comprehensive framework for evaluating and improving LLM response consistency.
arXiv Detail & Related papers (2025-03-28T11:49:56Z) - SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks [2.033441577169909]
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA)<n>Their robustness to distribution shifts on unseen data remains a key concern for safe deployment.<n>We introduce a novel framework, called SURE-VQA, centered around three key requirements to overcome current pitfalls.
arXiv Detail & Related papers (2024-11-29T13:22:52Z) - MM-R$^3$: On (In-)Consistency of Vision-Language Models (VLMs) [26.475993408532304]
We analyze performance of SoTA Vision Language Models on three tasks: Question Rephrasing, Image Restyling, and Context Reasoning.<n>Our analysis reveals that consistency does not always align with accuracy, indicating that models with higher accuracy are not necessarily more consistent, and vice versa.<n>We propose a simple yet effective mitigation strategy in the form of an adapter module trained to minimize inconsistency across prompts.
arXiv Detail & Related papers (2024-10-07T06:36:55Z) - TS-HTFA: Advancing Time Series Forecasting via Hierarchical Text-Free Alignment with Large Language Models [14.411646409316624]
We introduce textbfHierarchical textbfText-textbfFree textbfAlignment (textbfTS-HTFA), a novel method for time-series forecasting.<n>We replace paired text data with adaptive virtual text based on QR decomposition word embeddings and learnable prompt.<n>Experiments on multiple time-series benchmarks demonstrate that HTFA achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-09-23T12:57:24Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
This work proposes a robust fine-tuning method that improves both OOD accuracy and confidence calibration simultaneously in vision language models.
We show that both OOD classification and OOD calibration errors have a shared upper bound consisting of two terms of ID data.
Based on this insight, we design a novel framework that conducts fine-tuning with a constrained multimodal contrastive loss enforcing a larger smallest singular value.
arXiv Detail & Related papers (2023-11-03T05:41:25Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
Correlation based stereo matching has achieved outstanding performance.
Current methods with a fixed model do not work uniformly well across various datasets.
This paper proposes a new perspective to dynamically calculate correlation for robust stereo matching.
arXiv Detail & Related papers (2023-07-26T09:47:37Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information Extraction [49.15931834209624]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.<n>We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.<n>By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - MM-TTA: Multi-Modal Test-Time Adaptation for 3D Semantic Segmentation [104.48766162008815]
We propose and explore a new multi-modal extension of test-time adaptation for 3D semantic segmentation.
To design a framework that can take full advantage of multi-modality, each modality provides regularized self-supervisory signals to other modalities.
Our regularized pseudo labels produce stable self-learning signals in numerous multi-modal test-time adaptation scenarios.
arXiv Detail & Related papers (2022-04-27T02:28:12Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
We study the problem of test time robustification, i.e., using the test input to improve model robustness.
Recent prior works have proposed methods for test time adaptation, however, they each introduce additional assumptions.
We propose a simple approach that can be used in any test setting where the model is probabilistic and adaptable.
arXiv Detail & Related papers (2021-10-18T17:55:11Z) - Adaptive Consistency Regularization for Semi-Supervised Transfer
Learning [31.66745229673066]
We consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm.
To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization.
Our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch.
arXiv Detail & Related papers (2021-03-03T05:46:39Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.