SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
- URL: http://arxiv.org/abs/2411.19688v3
- Date: Thu, 03 Jul 2025 13:07:30 GMT
- Title: SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
- Authors: Kim-Celine Kahl, Selen Erkan, Jeremias Traub, Carsten T. Lüth, Klaus Maier-Hein, Lena Maier-Hein, Paul F. Jaeger,
- Abstract summary: Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA)<n>Their robustness to distribution shifts on unseen data remains a key concern for safe deployment.<n>We introduce a novel framework, called SURE-VQA, centered around three key requirements to overcome current pitfalls.
- Score: 2.033441577169909
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called SURE-VQA, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
Related papers
- Advancing Reliable Test-Time Adaptation of Vision-Language Models under Visual Variations [67.35596444651037]
Vision-language models (VLMs) exhibit remarkable zero-shot capabilities but struggle with distribution shifts in downstream tasks when labeled data is unavailable.<n>We propose a Reliable Test-time Adaptation (ReTA) method that enhances reliability from two perspectives.
arXiv Detail & Related papers (2025-07-13T05:37:33Z) - Test-Time Consistency in Vision Language Models [26.475993408532304]
Vision-Language Models (VLMs) have achieved impressive performance across a wide range of multimodal tasks.<n>Recent benchmarks, such as MM-R3, highlight that even state-of-the-art VLMs can produce divergent predictions across semantically equivalent inputs.<n>We propose a simple and effective test-time consistency framework that enhances semantic consistency without supervised re-training.
arXiv Detail & Related papers (2025-06-27T17:09:44Z) - Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning [71.3533541927459]
We propose a novel data selection paradigm termed Activation Reasoning Potential (RAP)<n>RAP identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning.<n>Our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%.
arXiv Detail & Related papers (2025-06-05T08:40:24Z) - Towards Robust LLMs: an Adversarial Robustness Measurement Framework [0.0]
Large Language Models (LLMs) remain vulnerable to adversarial perturbations, undermining their reliability in high-stakes applications.
We adapt the Robustness Measurement and Assessment framework to quantify LLM resilience against adversarial inputs without requiring access to model parameters.
Our work provides a systematic methodology to assess LLM robustness, advancing the development of more reliable language models for real-world deployment.
arXiv Detail & Related papers (2025-04-24T16:36:19Z) - Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction [0.0]
We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification.
We show that the framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains.
This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
arXiv Detail & Related papers (2025-04-24T15:39:46Z) - Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics [8.692647930497936]
We use conformal analysis to quantify the predictive uncertainty of a vision transformer based foundation model.
We show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model.
arXiv Detail & Related papers (2025-03-31T08:06:00Z) - Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions [8.069858557211132]
Large Language Models (LLMs) have shown remarkable capabilities across various tasks.<n>Their deployment in high-stake domains requires consistent and coherent behavior across multiple rounds of user interaction.<n>This paper introduces a comprehensive framework for evaluating and improving LLM response consistency.
arXiv Detail & Related papers (2025-03-28T11:49:56Z) - Benchmarking Vision Foundation Models for Input Monitoring in Autonomous Driving [7.064497253920508]
Vision Foundation Models (VFMs) as feature extractors and density modeling techniques are proposed.
A comparison with state-of-the-art binary OOD classification methods reveals that VFM embeddings with density estimation outperform existing approaches in identifying OOD inputs.
Our method detects high-risk inputs likely to cause errors in downstream tasks, thereby improving overall performance.
arXiv Detail & Related papers (2025-01-14T12:51:34Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.
We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.
Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - VHELM: A Holistic Evaluation of Vision Language Models [75.88987277686914]
We present the Holistic Evaluation of Vision Language Models (VHELM)
VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety.
Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast.
arXiv Detail & Related papers (2024-10-09T17:46:34Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - MM-R$^3$: On (In-)Consistency of Vision-Language Models (VLMs) [26.475993408532304]
We analyze performance of SoTA Vision Language Models on three tasks: Question Rephrasing, Image Restyling, and Context Reasoning.<n>Our analysis reveals that consistency does not always align with accuracy, indicating that models with higher accuracy are not necessarily more consistent, and vice versa.<n>We propose a simple yet effective mitigation strategy in the form of an adapter module trained to minimize inconsistency across prompts.
arXiv Detail & Related papers (2024-10-07T06:36:55Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
This work proposes a robust fine-tuning method that improves both OOD accuracy and confidence calibration simultaneously in vision language models.
We show that both OOD classification and OOD calibration errors have a shared upper bound consisting of two terms of ID data.
Based on this insight, we design a novel framework that conducts fine-tuning with a constrained multimodal contrastive loss enforcing a larger smallest singular value.
arXiv Detail & Related papers (2023-11-03T05:41:25Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - Robustness Analysis on Foundational Segmentation Models [28.01242494123917]
In this work, we perform a robustness analysis of Visual Foundation Models (VFMs) for segmentation tasks.
We benchmark seven state-of-the-art segmentation architectures using 2 different datasets.
Our findings reveal several key insights: VFMs exhibit vulnerabilities to compression-induced corruptions, despite not outpacing all of unimodal models in robustness, multimodal models show competitive resilience in zero-shot scenarios, and VFMs demonstrate enhanced robustness for certain object categories.
arXiv Detail & Related papers (2023-06-15T16:59:42Z) - Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis,
and LLMs Evaluations [111.88727295707454]
This paper reexamines the research on out-of-distribution (OOD) robustness in the field of NLP.
We propose a benchmark construction protocol that ensures clear differentiation and challenging distribution shifts.
We conduct experiments on pre-trained language models for analysis and evaluation of OOD robustness.
arXiv Detail & Related papers (2023-06-07T17:47:03Z) - Semantic Image Attack for Visual Model Diagnosis [80.36063332820568]
In practice, metric analysis on a specific train and test dataset does not guarantee reliable or fair ML models.
This paper proposes Semantic Image Attack (SIA), a method based on the adversarial attack that provides semantic adversarial images.
arXiv Detail & Related papers (2023-03-23T03:13:04Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - Shifts 2.0: Extending The Dataset of Real Distributional Shifts [25.31085238930148]
We extend the Shifts dataset with two datasets sourced from industrial, high-risk applications of high societal importance.
We consider the tasks of segmentation of white matter Multiple Sclerosis lesions in 3D magnetic resonance brain images and the estimation of power consumption in marine cargo vessels.
These new datasets will allow researchers to further explore robust generalization and uncertainty estimation in new situations.
arXiv Detail & Related papers (2022-06-30T16:51:52Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.