論文の概要: Dimensionality Reduction on IoT Monitoring Data of Smart Building for Energy Consumption Forecasting
- arxiv url: http://arxiv.org/abs/2506.22468v1
- Date: Thu, 19 Jun 2025 08:29:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-07 02:47:44.364973
- Title: Dimensionality Reduction on IoT Monitoring Data of Smart Building for Energy Consumption Forecasting
- Title(参考訳): エネルギー消費予測のためのスマートビルのIoTモニタリングデータの次元化
- Authors: Konstantinos Koutras, Agorakis Bompotas, Constantinos Halkiopoulos, Athanasios Kalogeras, Christos Alexakos,
- Abstract要約: 本研究は、環境・エネルギー消費センサを用いて、小さなスマートオフィスを監視するパイロットIoTネットワークから取得したデータの相関分析に焦点を当てる。
研究の動機は、機械学習(ML)予測アルゴリズムを入力パラメータのエネルギー消費削減に利用できるようにする監視変数間の統計的相関を見出すことであった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Internet of Things (IoT) plays a major role today in smart building infrastructures, from simple smart-home applications, to more sophisticated industrial type installations. The vast amounts of data generated from relevant systems can be processed in different ways revealing important information. This is especially true in the era of edge computing, when advanced data analysis and decision-making is gradually moving to the edge of the network where devices are generally characterised by low computing resources. In this context, one of the emerging main challenges is related to maintaining data analysis accuracy even with less data that can be efficiently handled by low resource devices. The present work focuses on correlation analysis of data retrieved from a pilot IoT network installation monitoring a small smart office by means of environmental and energy consumption sensors. The research motivation was to find statistical correlation between the monitoring variables that will allow the use of machine learning (ML) prediction algorithms for energy consumption reducing input parameters. For this to happen, a series of hypothesis tests for the correlation of three different environmental variables with the energy consumption were carried out. A total of ninety tests were performed, thirty for each pair of variables. In these tests, p-values showed the existence of strong or semi-strong correlation with two environmental variables, and of a weak correlation with a third one. Using the proposed methodology, we manage without examining the entire data set to exclude weak correlated variables while keeping the same score of accuracy.
- Abstract(参考訳): 今日のIoT(Internet of Things)は、シンプルなスマートホームアプリケーションから、より高度な産業タイプのインストレーションに至るまで、スマートな構築インフラストラクチャにおいて重要な役割を担っている。
関連するシステムから生成される膨大なデータを、重要な情報を明らかにする異なる方法で処理することができる。
これはエッジコンピューティングの時代において特に当てはまり、高度なデータ分析と意思決定が徐々にネットワークのエッジに移行し、デバイスは一般的に低いコンピューティングリソースによって特徴づけられる。
この文脈において、新たな課題の1つは、低リソースデバイスで効率的に処理できる少ないデータであっても、データ分析の精度を維持することである。
本研究は、環境・エネルギー消費センサを用いて、小さなスマートオフィスを監視するパイロットIoTネットワークから取得したデータの相関分析に焦点を当てる。
研究の動機は、機械学習(ML)予測アルゴリズムを入力パラメータのエネルギー消費削減に利用できるようにする監視変数間の統計的相関を見出すことであった。
これを実現するため,3つの異なる環境変数とエネルギー消費との相関に関する一連の仮説実験を行った。
合計で90の試験が実施され、各変数に対して30の試験が行われた。
その結果, p-values showed the strong or semi-strong correlation with two environment variables, and a weak correlation with a third means。
提案手法を用いることで,弱相関変数を排除し,同じ精度のスコアを保ちながら,データセット全体を検査することなく管理する。
関連論文リスト
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - A task of anomaly detection for a smart satellite Internet of things system [0.9427635404752934]
本稿では,教師なし深層学習異常検出システムを提案する。
生成する対向ネットワークと自己認識機構に基づいて,環境センサ変数間の複雑な線形および非線形の依存関係を自動的に学習する。
リアルタイム性能の高い実センサデータの異常点を監視でき、インテリジェント衛星インターネット・オブ・モノのシステム上で動作することができる。
論文 参考訳(メタデータ) (2024-03-21T14:26:29Z) - An Energy-Efficient Ensemble Approach for Mitigating Data Incompleteness in IoT Applications [0.0]
同時にエネルギー効率を向上しながら、データの不完全性に対して堅牢なIoTベースの機械学習システムを構築することが重要である。
ENAMLEは、同時に欠落するデータの影響を緩和するための、能動的でエネルギーに配慮した技術である。
本研究では,ENAMLEのエネルギー効率を示す2つの異なるデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2024-03-15T15:01:48Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - Ensemble Learning based Anomaly Detection for IoT Cybersecurity via
Bayesian Hyperparameters Sensitivity Analysis [2.3226893628361682]
IoT(Internet of Things)は、世界中の何十億ものインテリジェントデバイスを統合し、他の接続デバイスと通信する機能を備えている。
IoTによって収集されたデータには、異常検出のための膨大な情報が含まれている。
本稿では,異常検出によるIoTサイバーセキュリティ向上のためのアンサンブル機械学習手法について検討する。
論文 参考訳(メタデータ) (2023-07-20T05:23:49Z) - Smart Home Energy Management: VAE-GAN synthetic dataset generator and
Q-learning [15.995891934245334]
本稿では,スマートホームにおけるエネルギー消費に関する時系列データを生成するための,変分自動エンコーダ生成対向ネットワーク(VAE-GAN)手法を提案する。
実世界のスマートホームデータを用いて,Qラーニングに基づくHEMSのオンラインパフォーマンスを検証した。
論文 参考訳(メタデータ) (2023-05-14T22:22:16Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
テラヘルツ(THz)無線システムに対する拡張現実(XR)体験を最適化するために、新しい共同センシング、通信、人工知能(AI)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-29T00:39:50Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
IoT(Internet of Things)環境は、多数のIoT対応センシングデバイスを介して監視される。
この問題を緩和するため、センサーは比較的低いサンプリング周波数で動作するように設定されることが多い。
これは、予測などの後続の意思決定を劇的に妨げる可能性がある。
論文 参考訳(メタデータ) (2022-06-15T19:46:59Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Occupancy Detection in Room Using Sensor Data [0.0]
本稿では,複数の変数を用いてセンサデータを用いて占有率を検出するソリューションを提案する。
Decision Tree, Random Forest, Gradient Boosting Machine, Logistic Regression, Naive Bayes, Kernelized SVM, K-Nearest Neighborsの7つの有名なアルゴリズムがテストされ、比較されている。
論文 参考訳(メタデータ) (2021-01-10T19:53:57Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
本稿では、移動体拡張現実(AR)クライアントのエネルギー消費と、畳み込みニューラルネットワーク(CNN)に基づく物体検出を行う際の検出遅延について、初めて詳細な実験を行った。
我々は,移動体ARクライアントのエネルギー分析を精査し,CNNによる物体検出を行う際のエネルギー消費に関するいくつかの興味深い視点を明らかにした。
論文 参考訳(メタデータ) (2020-11-26T00:32:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。