論文の概要: A task of anomaly detection for a smart satellite Internet of things system
- arxiv url: http://arxiv.org/abs/2403.14738v1
- Date: Thu, 21 Mar 2024 14:26:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 21:21:55.242130
- Title: A task of anomaly detection for a smart satellite Internet of things system
- Title(参考訳): スマート衛星物のインターネットにおける異常検出の一課題
- Authors: Zilong Shao,
- Abstract要約: 本稿では,教師なし深層学習異常検出システムを提案する。
生成する対向ネットワークと自己認識機構に基づいて,環境センサ変数間の複雑な線形および非線形の依存関係を自動的に学習する。
リアルタイム性能の高い実センサデータの異常点を監視でき、インテリジェント衛星インターネット・オブ・モノのシステム上で動作することができる。
- 参考スコア(独自算出の注目度): 0.9427635404752934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When the equipment is working, real-time collection of environmental sensor data for anomaly detection is one of the key links to prevent industrial process accidents and network attacks and ensure system security. However, under the environment with specific real-time requirements, the anomaly detection for environmental sensors still faces the following difficulties: (1) The complex nonlinear correlation characteristics between environmental sensor data variables lack effective expression methods, and the distribution between the data is difficult to be captured. (2) it is difficult to ensure the real-time monitoring requirements by using complex machine learning models, and the equipment cost is too high. (3) Too little sample data leads to less labeled data in supervised learning. This paper proposes an unsupervised deep learning anomaly detection system. Based on the generative adversarial network and self-attention mechanism, considering the different feature information contained in the local subsequences, it automatically learns the complex linear and nonlinear dependencies between environmental sensor variables, and uses the anomaly score calculation method combining reconstruction error and discrimination error. It can monitor the abnormal points of real sensor data with high real-time performance and can run on the intelligent satellite Internet of things system, which is suitable for the real working environment. Anomaly detection outperforms baseline methods in most cases and has good interpretability, which can be used to prevent industrial accidents and cyber-attacks for monitoring environmental sensors.
- Abstract(参考訳): 機器が動作している場合、異常検出のための環境センサデータのリアルタイム収集は、産業プロセスの事故やネットワーク攻撃を防止し、システムのセキュリティを確保するための重要なリンクの1つである。
しかし, 特定のリアルタイム要求環境下では, 環境センサの異常検出は, 1) 環境センサデータ変数間の複雑な非線形相関特性は, 効果的な表現法が欠如しており, データの分布を捉えることは困難である。
2) 複雑な機械学習モデルを用いることで, リアルタイム監視の要求を満たすことは困難であり, 設備コストが高すぎる。
(3) サンプルデータが少なすぎると、教師あり学習におけるラベル付きデータが少なくなる。
本稿では,教師なし深層学習異常検出システムを提案する。
本手法は, 環境センサ変数間の複雑な線形および非線形の依存関係を自動的に学習し, 再構成誤差と判別誤差を組み合わせた異常スコア計算手法を用いる。
リアルタイム性能の高い実センサデータの異常点を監視でき、実際の作業環境に適したインテリジェント衛星インターネット・オブ・モノシステム上で動作することができる。
異常検出は、ほとんどのケースにおいてベースライン法よりも優れており、高い解釈性を持ち、産業事故や環境センサ監視のためのサイバー攻撃を防ぐために使用できる。
関連論文リスト
- Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics [8.715570103753697]
複雑なシステムの信頼性と効率的な運用にはリアルタイム状態監視が不可欠である。
本稿では,HTGNN(Heterogeneous Temporal Graph Neural Network)フレームワークを提案する。
HTGNNは多様なセンサーからの信号を明示的にモデル化し、動作条件をモデルアーキテクチャに統合する。
論文 参考訳(メタデータ) (2024-07-26T12:16:53Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Fast Wireless Sensor Anomaly Detection based on Data Stream in Edge
Computing Enabled Smart Greenhouse [5.716360276016705]
エッジコンピューティングを有効にするスマート温室は、IoT技術の代表的なアプリケーションである。
従来の異常検出アルゴリズムは、無線センサによって生成されたデータストリームの特性を適切に考慮していない。
論文 参考訳(メタデータ) (2021-07-28T13:32:12Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
オートエンコーダは、マルチセンサー環境で異常を検出するために使用される教師なしモデルである。
異常は、実際の環境の変化(実際のドリフト)や、故障した感覚デバイス(仮想ドリフト)から生じる。
論文 参考訳(メタデータ) (2021-07-28T10:19:58Z) - Anomaly Detection through Transfer Learning in Agriculture and
Manufacturing IoT Systems [4.193524211159057]
本稿では, 農作物に設置したセンサから, 7種類のセンサからのデータと, 振動センサを用いた先進的な製造試験からのデータを分析する。
これら2つのアプリケーション領域において、予測的障害分類がいかに達成され、予測的メンテナンスの道が開かれたかを示す。
論文 参考訳(メタデータ) (2021-02-11T02:37:27Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
オンライン学習に基づく温度・湿度・圧力センサの非校正検出装置を開発した。
このソリューションはニューラルネットワークをメインコンポーネントとして統合し、校正条件下でのセンサーの動作から学習する。
その結果, 提案手法は, 偏差値0.25度, 1% RH, 1.5Paの偏差をそれぞれ検出できることがわかった。
論文 参考訳(メタデータ) (2021-02-02T15:44:39Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
本稿では, 産業環境における異常検出に対する弱い制御手法を提案する。
これらのアプローチでは、Digital Twinを使用して、機械の通常の動作をシミュレートするトレーニングデータセットを生成する。
提案手法の性能を,実世界のデータセットに応用した様々な最先端の異常検出アルゴリズムと比較した。
論文 参考訳(メタデータ) (2020-11-12T10:15:56Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
異常検出は、期待される振る舞いから著しく逸脱するデータパターンを特定することに関わる。
データ分析からe-health、サイバーセキュリティ、予測メンテナンス、障害防止、産業自動化に至るまで、幅広いアプリケーション領域があるため、これは重要な研究課題である。
本稿では,センサシステムの特定の領域における異常検出に使用される最先端手法について概説する。
論文 参考訳(メタデータ) (2020-10-27T09:56:16Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。