Mitigating Gambling-Like Risk-Taking Behaviors in Large Language Models: A Behavioral Economics Approach to AI Safety
- URL: http://arxiv.org/abs/2506.22496v1
- Date: Wed, 25 Jun 2025 03:45:35 GMT
- Title: Mitigating Gambling-Like Risk-Taking Behaviors in Large Language Models: A Behavioral Economics Approach to AI Safety
- Authors: Y. Du,
- Abstract summary: Large Language Models (LLMs) exhibit systematic risk-taking behaviors analogous to those observed in gambling psychology.<n>We propose a framework to address these behavioral biases through risk-calibrated training, loss-aversion mechanisms, and uncertainty-aware decision making.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) exhibit systematic risk-taking behaviors analogous to those observed in gambling psychology, including overconfidence bias, loss-chasing tendencies, and probability misjudgment. Drawing from behavioral economics and prospect theory, we identify and formalize these "gambling-like" patterns where models sacrifice accuracy for high-reward outputs, exhibit escalating risk-taking after errors, and systematically miscalibrate uncertainty. We propose the Risk-Aware Response Generation (RARG) framework, incorporating insights from gambling research to address these behavioral biases through risk-calibrated training, loss-aversion mechanisms, and uncertainty-aware decision making. Our approach introduces novel evaluation paradigms based on established gambling psychology experiments, including AI adaptations of the Iowa Gambling Task and probability learning assessments. Experimental results demonstrate measurable reductions in gambling-like behaviors: 18.7\% decrease in overconfidence bias, 24.3\% reduction in loss-chasing tendencies, and improved risk calibration across diverse scenarios. This work establishes the first systematic framework for understanding and mitigating gambling psychology patterns in AI systems.
Related papers
- Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs [83.11815479874447]
We propose a novel jailbreak attack framework, inspired by cognitive decomposition and biases in human cognition.<n>We employ cognitive decomposition to reduce the complexity of malicious prompts and relevance bias to reorganize prompts.<n>We also introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm.
arXiv Detail & Related papers (2025-05-03T05:28:11Z) - Adapting Probabilistic Risk Assessment for AI [0.0]
General-purpose artificial intelligence (AI) systems present an urgent risk management challenge.<n>Current methods often rely on selective testing and undocumented assumptions about risk priorities.<n>This paper introduces the probabilistic risk assessment (PRA) for AI framework.
arXiv Detail & Related papers (2025-04-25T17:59:14Z) - Fragility-aware Classification for Understanding Risk and Improving Generalization [6.926253982569273]
We introduce the Fragility Index (FI), a novel metric that evaluates classification performance from a risk-averse perspective.<n>We derive exact reformulations for cross-entropy loss, hinge-type loss, and Lipschitz loss, and extend the approach to deep learning models.
arXiv Detail & Related papers (2025-02-18T16:44:03Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
We focus on how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications.<n>Our research identifies two critical latent factors affecting RAG's confidence in its predictions.<n>We develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers.
arXiv Detail & Related papers (2024-09-24T14:52:14Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Selecting Models based on the Risk of Damage Caused by Adversarial
Attacks [2.969705152497174]
Regulation, legal liabilities, and societal concerns challenge the adoption of AI in safety and security-critical applications.
One of the key concerns is that adversaries can cause harm by manipulating model predictions without being detected.
We propose a method to model and statistically estimate the probability of damage arising from adversarial attacks.
arXiv Detail & Related papers (2023-01-28T10:24:38Z) - Detecting and Mitigating Test-time Failure Risks via Model-agnostic
Uncertainty Learning [30.86992077157326]
This paper introduces Risk Advisor, a novel post-hoc meta-learner for estimating failure risks and predictive uncertainties of any already-trained black-box classification model.
In addition to providing a risk score, the Risk Advisor decomposes the uncertainty estimates into aleatoric and epistemic uncertainty components.
Experiments on various families of black-box classification models and on real-world and synthetic datasets show that the Risk Advisor reliably predicts deployment-time failure risks.
arXiv Detail & Related papers (2021-09-09T17:23:31Z) - Bounded Risk-Sensitive Markov Games: Forward Policy Design and Inverse
Reward Learning with Iterative Reasoning and Cumulative Prospect Theory [33.57592649823294]
We investigate the problem of bounded risk-sensitive Markov Game (BRSMG) and its inverse reward learning problem.
We show that humans have bounded intelligence and maximize risk-sensitive utilities in BRSMGs.
The results show that the behaviors of agents demonstrate both risk-averse and risk-seeking characteristics.
arXiv Detail & Related papers (2020-09-03T07:32:32Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
In risk-sensitive learning, one aims to find a hypothesis that minimizes a risk-averse (or risk-seeking) measure of loss.
We study the generalization properties of risk-sensitive learning schemes whose optimand is described via optimized certainty equivalents.
arXiv Detail & Related papers (2020-06-15T05:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.