Weak-to-Strong GraphRAG: Aligning Weak Retrievers with Large Language Models for Graph-based Retrieval Augmented Generation
- URL: http://arxiv.org/abs/2506.22518v1
- Date: Thu, 26 Jun 2025 17:40:23 GMT
- Title: Weak-to-Strong GraphRAG: Aligning Weak Retrievers with Large Language Models for Graph-based Retrieval Augmented Generation
- Authors: Deyu Zou, Yongqiang Chen, Mufei Li, Siqi Miao, Chenxi Liu, Bo Han, James Cheng, Pan Li,
- Abstract summary: Graph-based retrieval-augmented generation (RAG) enables large language models (LLMs) to mitigate hallucinations.<n>This paper introduces Refined Graph-based RAG (ReG) to align weak retrievers to LLMs for graph-based RAG.<n>ReG incorporates LLM feedback to get rid of spurious signals and improve the quality of the supervision.
- Score: 29.492846663357565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based retrieval-augmented generation (RAG) enables large language models (LLMs) to ground responses with structured external knowledge from up-to-date knowledge graphs (KGs) and reduce hallucinations. However, LLMs often rely on a weak retriever in graph-based RAG: I) Due to the lack of ground truth, the retriever is often trained on weak supervision, which often introduces spurious signals to the LLMs. II) Due to the abstraction of graph data, the retrieved knowledge is often presented in unorganized forms. To mitigate the issue, we present Refined Graph-based RAG (ReG) to align weak retrievers to LLMs for graph-based RAG. Specifically, ReG incorporates LLM feedback to get rid of spurious signals and improve the quality of the supervision. Meanwhile, ReG introduces a structure-aware reorganization module to refactor the retrieval results into logically coherent evidence chains. Experiments on prominent benchmarks demonstrate that ReG significantly and consistently brings improvements across different LLM backbones by up to 10%. The improved supervision quality enables ReG to match the state-of-the-art performance with 5% training data and to transfer to out-of-distribution KGs. Notably, when adopted to reasoning-based LLMs, ReG reduces the reasoning token cost by up to 30% and improves the performance by up to 4%.
Related papers
- Graph-R1: Towards Agentic GraphRAG Framework via End-to-end Reinforcement Learning [20.05893083101089]
Graph-R1 is an agentic GraphRAG framework via end-to-end reinforcement learning (RL)<n>It introduces lightweight knowledge hypergraph construction, models retrieval as a multi-turn agent-environment interaction.<n>Experiments on standard RAG datasets show that Graph-R1 outperforms traditional GraphRAG and RL-enhanced RAG methods in reasoning accuracy, retrieval efficiency, and generation quality.
arXiv Detail & Related papers (2025-07-29T15:01:26Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - DynamicRAG: Leveraging Outputs of Large Language Model as Feedback for Dynamic Reranking in Retrieval-Augmented Generation [23.060355911225923]
Reranker plays vital role in refining retrieved documents to enhance generation quality and explainability.<n>We propose DynamicRAG, a novel RAG framework where the reranker dynamically adjusts both the order and number of retrieved documents.
arXiv Detail & Related papers (2025-05-12T05:19:01Z) - Compile Scene Graphs with Reinforcement Learning [69.36723767339001]
Next-token prediction is the fundamental principle for training large language models (LLMs)<n>We introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset.<n>We design a set of graph-centric rewards, including three recall-based variants -- Hard Recall, Hard Recall+Relax, and Soft Recall.
arXiv Detail & Related papers (2025-04-18T10:46:22Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - Fine-Grained Guidance for Retrievers: Leveraging LLMs' Feedback in Retrieval-Augmented Generation [20.420575358183687]
Retrieval-Augmented Generation (RAG) has proven to be an effective method for mitigating hallucination issues inherent in large language models (LLMs)
Previous approaches typically train retrievers based on semantic similarity, lacking optimization for RAG.
We propose a novel framework, FiGRet, which leverages the language capabilities of LLMs to construct examples from a more granular, information-centric perspective.
arXiv Detail & Related papers (2024-11-06T14:42:39Z) - Simple Is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
Large Language Models (LLMs) demonstrate strong reasoning abilities but face limitations such as hallucinations and outdated knowledge.<n>We introduce SubgraphRAG, extending the Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) framework that retrieves subgraphs.<n>Our approach innovatively integrates a lightweight multilayer perceptron with a parallel triple-scoring mechanism for efficient and flexible subgraph retrieval.
arXiv Detail & Related papers (2024-10-28T04:39:32Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
We propose a framework for training query rewriting models free of annotations.
By leveraging a publicly available reranker, oursprovides feedback aligned well with the rewriting objectives.
arXiv Detail & Related papers (2024-05-23T11:00:19Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.