論文の概要: Maximum Dispersion, Maximum Concentration: Enhancing the Quality of MOP Solutions
- arxiv url: http://arxiv.org/abs/2506.22568v1
- Date: Fri, 27 Jun 2025 18:32:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.470103
- Title: Maximum Dispersion, Maximum Concentration: Enhancing the Quality of MOP Solutions
- Title(参考訳): 最大分散, 最大濃度:MOP溶液の品質向上
- Authors: Gladston Moreira, Ivan Meneghini, Elzabeth Wanner,
- Abstract要約: 多目的最適化問題(MOP)は、しばしば相反する目的間のトレードオフを必要とし、目的空間における多様性と収束を最大化する。
本研究では, 決定空間における分散と, 目的空間の特定の領域における収束を最適化することにより, MOPソリューションの品質を向上させる手法を提案する。
- 参考スコア(独自算出の注目度): 0.08192907805418582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-objective optimization problems (MOPs) often require a trade-off between conflicting objectives, maximizing diversity and convergence in the objective space. This study presents an approach to improve the quality of MOP solutions by optimizing the dispersion in the decision space and the convergence in a specific region of the objective space. Our approach defines a Region of Interest (ROI) based on a cone representing the decision maker's preferences in the objective space, while enhancing the dispersion of solutions in the decision space using a uniformity measure. Combining solution concentration in the objective space with dispersion in the decision space intensifies the search for Pareto-optimal solutions while increasing solution diversity. When combined, these characteristics improve the quality of solutions and avoid the bias caused by clustering solutions in a specific region of the decision space. Preliminary experiments suggest that this method enhances multi-objective optimization by generating solutions that effectively balance dispersion and concentration, thereby mitigating bias in the decision space.
- Abstract(参考訳): 多目的最適化問題(MOP)は、しばしば相反する目的間のトレードオフを必要とし、目的空間における多様性と収束を最大化する。
本研究では, 決定空間における分散と, 目的空間の特定の領域における収束を最適化することにより, MOPソリューションの品質を向上させる手法を提案する。
目的空間における意思決定者の嗜好を表す円錐に基づいて、一様度尺度を用いて、決定空間における解の分散を高めながら、関心領域(ROI)を定義した。
対象空間における溶液濃度と決定空間における分散の組合せは、解の多様性を高めながら、パレート最適解の探索を強化する。
組み合わせると、これらの特性は解の質を改善し、決定空間の特定の領域におけるクラスタリング解に起因するバイアスを避ける。
予備実験により, この手法は分散と濃度のバランスを効果的に保ち, 決定空間のバイアスを軽減し, 多目的最適化を促進することが示唆された。
関連論文リスト
- Preference-Guided Diffusion for Multi-Objective Offline Optimization [64.08326521234228]
オフライン多目的最適化のための優先誘導拡散モデルを提案する。
我々の指導は、ある設計が他の設計を支配する確率を予測するために訓練された選好モデルである。
本結果は,多種多様な高品質な解を生成する上での分類器誘導拡散モデルの有効性を浮き彫りにした。
論文 参考訳(メタデータ) (2025-03-21T16:49:38Z) - Improving Pareto Set Learning for Expensive Multi-objective Optimization via Stein Variational Hypernetworks [4.124390946636935]
重大多目的最適化問題(EMOP)は、目的関数の評価にコストがかかる実世界のシナリオでは一般的である。
本稿では,Stein Variational Gradient Descent (SVGD) を Hypernetworks に統合した SVH-PSL という新しい手法を提案する。
本手法は, 解空間を滑らかにするために粒子を集合的に移動させることにより, フラグメント化サロゲートモデルと擬似局所最適化の問題に対処する。
論文 参考訳(メタデータ) (2024-12-23T06:05:45Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
生成拡散モデルは、様々なクロスドメインアプリケーションで人気がある。
これらのモデルは複雑なネットワーク最適化問題に対処する上で有望である。
本稿では拡散モデルに基づく解生成という,拡散モデル生成のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - Differentiation of Multi-objective Data-driven Decision Pipeline [34.577809430781144]
実世界のシナリオは、しばしば多目的データ駆動最適化問題を含む。
従来の2段階の手法では、機械学習モデルを用いて問題係数を推定し、続いて予測された最適化問題に取り組むためにソルバを呼び出す。
近年の取り組みは、下流最適化問題から導かれる意思決定損失を用いた予測モデルのエンドツーエンドトレーニングに重点を置いている。
論文 参考訳(メタデータ) (2024-06-02T15:42:03Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
マルチモーダル最適化は高い適合性ソリューションを生み出し、品質の多様性は遺伝的中立性に敏感ではない。
オートエンコーダは表現型特徴を自動的に発見するために使用され、品質の多様性を備えたさらに多様なソリューションセットを生成する。
論文 参考訳(メタデータ) (2021-05-10T10:39:03Z) - Niching Diversity Estimation for Multi-modal Multi-objective
Optimization [9.584279193016522]
ニッチは進化的多目的最適化において重要かつ広く用いられている手法である。
MMOPでは、対象空間の解は決定空間に複数の逆像を持つことができ、これは等価解と呼ばれる。
MMOPの処理において、標準多様性推定器をより効率的にするために、一般的なニチング機構を提案する。
論文 参考訳(メタデータ) (2021-01-31T05:23:31Z) - Manifold Interpolation for Large-Scale Multi-Objective Optimization via
Generative Adversarial Networks [12.18471608552718]
大規模多目的最適化問題(LSMOP)は、数百から数千の決定変数と複数の矛盾する目的を含むことを特徴とする。
これまでの研究では、これらの最適解は低次元空間の多様体構造に一様に分布していることが示されている。
本研究では, 生成逆数ネットワーク(GAN)に基づく多様体フレームワークを提案し, 多様体を学習し, 高品質な解を生成する。
論文 参考訳(メタデータ) (2021-01-08T09:38:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。