LightBSR: Towards Lightweight Blind Super-Resolution via Discriminative Implicit Degradation Representation Learning
- URL: http://arxiv.org/abs/2506.22710v1
- Date: Sat, 28 Jun 2025 01:24:10 GMT
- Title: LightBSR: Towards Lightweight Blind Super-Resolution via Discriminative Implicit Degradation Representation Learning
- Authors: Jiang Yuan, JI Ma, Bo Wang, Guanzhou Ke, Weiming Hu,
- Abstract summary: Implicit degradation estimation-based blind super-resolution (IDE-BSR) hinges on extracting the implicit degradation representation (IDR) of the LR image.<n>Existing methods ignore the importance of IDR discriminability for BSR.<n>We propose a new powerful and lightweight BSR model termed LightBSR.
- Score: 31.033241616185375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit degradation estimation-based blind super-resolution (IDE-BSR) hinges on extracting the implicit degradation representation (IDR) of the LR image and adapting it to LR image features to guide HR detail restoration. Although IDE-BSR has shown potential in dealing with noise interference and complex degradations, existing methods ignore the importance of IDR discriminability for BSR and instead over-complicate the adaptation process to improve effect, resulting in a significant increase in the model's parameters and computations. In this paper, we focus on the discriminability optimization of IDR and propose a new powerful and lightweight BSR model termed LightBSR. Specifically, we employ a knowledge distillation-based learning framework. We first introduce a well-designed degradation-prior-constrained contrastive learning technique during teacher stage to make the model more focused on distinguishing different degradation types. Then we utilize a feature alignment technique to transfer the degradation-related knowledge acquired by the teacher to the student for practical inferencing. Extensive experiments demonstrate the effectiveness of IDR discriminability-driven BSR model design. The proposed LightBSR can achieve outstanding performance with minimal complexity across a range of blind SR tasks. Our code is accessible at: https://github.com/MJ-NCEPU/LightBSR.
Related papers
- Blind Super Resolution with Reference Images and Implicit Degradation Representation [5.34372866210952]
Degradation kernels should account for not only the degradation process but also the downscaling factor.<n>Applying the same degradation kernel across varying super-resolution scales may be impractical.<n>Our research acknowledges degradation kernels and scaling factors as pivotal elements for the BSR task.
arXiv Detail & Related papers (2025-07-18T13:45:04Z) - Co-learning Single-Step Diffusion Upsampler and Downsampler with Two Discriminators and Distillation [28.174638880324014]
Super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.<n>We propose a co-learning framework that jointly optimize a single-step diffusion-based upsampler and a learnable downsampler.
arXiv Detail & Related papers (2024-10-10T07:12:46Z) - Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes [51.92255321684027]
We propose a novel plug-and-play module designed to mitigate misalignment issues by aligning LR inputs with HR images during training.
Specifically, our approach involves mimicking a novel LR sample that aligns with HR while preserving the characteristics of the original LR samples.
We comprehensively evaluate our method on synthetic and real-world datasets, demonstrating its effectiveness across a spectrum of SR models.
arXiv Detail & Related papers (2024-10-07T18:18:54Z) - Content-decoupled Contrastive Learning-based Implicit Degradation Modeling for Blind Image Super-Resolution [33.16889233975723]
Implicit degradation modeling-based blind super-resolution (SR) has attracted more increasing attention in the community.<n>We propose a new Content-decoupled Contrastive Learning-based blind image super-resolution (CdCL) framework.
arXiv Detail & Related papers (2024-08-10T04:51:43Z) - Learning Correction Errors via Frequency-Self Attention for Blind Image
Super-Resolution [1.734165485480267]
We introduce a novel blind SR approach that focuses on Learning Correction Errors (LCE)
Within an SR network, we jointly optimize SR performance by utilizing both the original LR image and the frequency learning of the CLR image.
Our approach effectively addresses the challenges associated with degradation estimation and correction errors, paving the way for more accurate blind image SR.
arXiv Detail & Related papers (2024-03-12T07:58:14Z) - Low-Res Leads the Way: Improving Generalization for Super-Resolution by
Self-Supervised Learning [45.13580581290495]
This work introduces a novel "Low-Res Leads the Way" (LWay) training framework to enhance the adaptability of SR models to real-world images.
Our approach utilizes a low-resolution (LR) reconstruction network to extract degradation embeddings from LR images, merging them with super-resolved outputs for LR reconstruction.
Our training regime is universally compatible, requiring no network architecture modifications, making it a practical solution for real-world SR applications.
arXiv Detail & Related papers (2024-03-05T02:29:18Z) - DifAugGAN: A Practical Diffusion-style Data Augmentation for GAN-based
Single Image Super-resolution [88.13972071356422]
We propose a diffusion-style data augmentation scheme for GAN-based image super-resolution (SR) methods, known as DifAugGAN.
It involves adapting the diffusion process in generative diffusion models for improving the calibration of the discriminator during training.
Our DifAugGAN can be a Plug-and-Play strategy for current GAN-based SISR methods to improve the calibration of the discriminator and thus improve SR performance.
arXiv Detail & Related papers (2023-11-30T12:37:53Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - Learning Detail-Structure Alternative Optimization for Blind
Super-Resolution [69.11604249813304]
We propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR.
In our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures.
Our method achieves the state-of-the-art against existing methods.
arXiv Detail & Related papers (2022-12-03T14:44:17Z) - Knowledge Distillation based Degradation Estimation for Blind
Super-Resolution [146.0988597062618]
Blind image super-resolution (Blind-SR) aims to recover a high-resolution (HR) image from its corresponding low-resolution (LR) input image with unknown degradations.
It is infeasible to provide concrete labels of multiple degradation combinations to supervise the degradation estimator training.
We propose a knowledge distillation based implicit degradation estimator network (KD-IDE) and an efficient SR network.
arXiv Detail & Related papers (2022-11-30T11:59:07Z) - Meta-Learning based Degradation Representation for Blind
Super-Resolution [54.93926549648434]
We propose a Meta-Learning based Region Degradation Aware SR Network (MRDA)
We use the MRDA to rapidly adapt to the specific complex degradation after several iterations and extract implicit degradation information.
A teacher network MRDA$_T$ is designed to further utilize the degradation information extracted by MLN for SR.
arXiv Detail & Related papers (2022-07-28T09:03:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.