DMD-Net: Deep Mesh Denoising Network
- URL: http://arxiv.org/abs/2506.22850v1
- Date: Sat, 28 Jun 2025 11:13:45 GMT
- Title: DMD-Net: Deep Mesh Denoising Network
- Authors: Aalok Gangopadhyay, Shashikant Verma, Shanmuganathan Raman,
- Abstract summary: We present DMD-Net, an end-to-end deep learning framework, for solving the mesh denoising problem.<n>DMD-Net consists of a Graph Convolutional Neural Network in which aggregation is performed in both the primal as well as the dual graph.<n>We show that our method obtains competitive or better results when compared with the state-of-the-art mesh denoising algorithms.
- Score: 16.576983459630267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Deep Mesh Denoising Network (DMD-Net), an end-to-end deep learning framework, for solving the mesh denoising problem. DMD-Net consists of a Graph Convolutional Neural Network in which aggregation is performed in both the primal as well as the dual graph. This is realized in the form of an asymmetric two-stream network, which contains a primal-dual fusion block that enables communication between the primal-stream and the dual-stream. We develop a Feature Guided Transformer (FGT) paradigm, which consists of a feature extractor, a transformer, and a denoiser. The feature extractor estimates the local features, that guide the transformer to compute a transformation, which is applied to the noisy input mesh to obtain a useful intermediate representation. This is further processed by the denoiser to obtain the denoised mesh. Our network is trained on a large scale dataset of 3D objects. We perform exhaustive ablation studies to demonstrate that each component in our network is essential for obtaining the best performance. We show that our method obtains competitive or better results when compared with the state-of-the-art mesh denoising algorithms. We demonstrate that our method is robust to various kinds of noise. We observe that even in the presence of extremely high noise, our method achieves excellent performance.
Related papers
- Double-Shot 3D Shape Measurement with a Dual-Branch Network for Structured Light Projection Profilometry [14.749887303860717]
We propose a dual-branch Convolutional Neural Network (CNN)-Transformer network (PDCNet) to process different structured light (SL) modalities.<n>Within PDCNet, a Transformer branch is used to capture global perception in the fringe images, while a CNN branch is designed to collect local details in the speckle images.<n>Our method can reduce fringe order ambiguity while producing high-accuracy results on self-made datasets.
arXiv Detail & Related papers (2024-07-19T10:49:26Z) - Mesh Denoising Transformer [104.5404564075393]
Mesh denoising is aimed at removing noise from input meshes while preserving their feature structures.
SurfaceFormer is a pioneering Transformer-based mesh denoising framework.
New representation known as Local Surface Descriptor captures local geometric intricacies.
Denoising Transformer module receives the multimodal information and achieves efficient global feature aggregation.
arXiv Detail & Related papers (2024-05-10T15:27:43Z) - Integrating Graph Neural Networks with Scattering Transform for Anomaly Detection [0.0]
We present two novel methods in Network Intrusion Detection Systems (NIDS) using Graph Neural Networks (GNNs)
The first approach, Scattering Transform with E-GraphSAGE (STEG), utilizes the scattering transform to conduct multi-resolution analysis of edge feature vectors.
The second approach improves node representation by initiating with Node2Vec, diverging from standard methods of using uniform values.
arXiv Detail & Related papers (2024-04-16T00:02:12Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Visual Recognition [63.93802691275012]
We propose a lightweight Dual Dynamic Token Mixer (D-Mixer) to simultaneously learn global and local dynamics.<n>We use D-Mixer as the basic building block to design TransXNet, a novel hybrid CNN-Transformer vision backbone network.<n>In the ImageNet-1K classification, TransXNet-T surpasses Swin-T by 0.3% in top-1 accuracy while requiring less than half of the computational cost.
arXiv Detail & Related papers (2023-10-30T09:35:56Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
We propose a novel approach by mining the Cross-Modal Semantics to guide the fusion and decoding of multimodal features.
Specifically, we propose a novel network, termed XMSNet, consisting of (1) all-round attentive fusion (AF), (2) coarse-to-fine decoder (CFD), and (3) cross-layer self-supervision.
arXiv Detail & Related papers (2023-05-17T14:30:11Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
Hyperspectral images (HSIs) are often quite noisy because of narrow band spectral filtering.
To reduce the noise in HSI data cubes, both model-driven and learning-based denoising algorithms have been proposed.
This paper proposes a Degradation-Noise-Aware Unfolding Network (DNA-Net) that addresses these issues.
arXiv Detail & Related papers (2023-05-06T13:28:20Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Implicit Neural Representations (INRs) encode continuous multi-media data via multi-layer perceptrons.
Existing works manipulate such continuous representations via processing on their discretized instance.
We propose an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR.
arXiv Detail & Related papers (2022-10-17T06:29:07Z) - GridDehazeNet+: An Enhanced Multi-Scale Network with Intra-Task
Knowledge Transfer for Single Image Dehazing [12.982905875008214]
We propose an enhanced multi-scale network, dubbed GridDehazeNet+, for single image dehazing.
It consists of three modules: pre-processing, backbone, and post-processing.
arXiv Detail & Related papers (2021-03-25T17:35:36Z) - ES-Net: An Efficient Stereo Matching Network [4.8986598953553555]
Existing stereo matching networks typically use slow and computationally expensive 3D convolutions to improve the performance.
We propose the Efficient Stereo Network (ESNet), which achieves high performance and efficient inference at the same time.
arXiv Detail & Related papers (2021-03-05T20:11:39Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.