Deep neural networks can provably solve Bellman equations for Markov decision processes without the curse of dimensionality
- URL: http://arxiv.org/abs/2506.22851v1
- Date: Sat, 28 Jun 2025 11:25:44 GMT
- Title: Deep neural networks can provably solve Bellman equations for Markov decision processes without the curse of dimensionality
- Authors: Arnulf Jentzen, Konrad Kleinberg, Thomas Kruse,
- Abstract summary: Discrete time optimal control problems and leaky decision processes (MDPs) are fundamental models for sequential decision-making under uncertainty.<n>In this article, we construct deep neural network (DNN) approximations for $Q$-functions associated to MDPs with infinite time horizon and finite control set $A$.
- Score: 3.6185342807265415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrete time stochastic optimal control problems and Markov decision processes (MDPs) are fundamental models for sequential decision-making under uncertainty and as such provide the mathematical framework underlying reinforcement learning theory. A central tool for solving MDPs is the Bellman equation and its solution, the so-called $Q$-function. In this article, we construct deep neural network (DNN) approximations for $Q$-functions associated to MDPs with infinite time horizon and finite control set $A$. More specifically, we show that if the the payoff function and the random transition dynamics of the MDP can be suitably approximated by DNNs with leaky rectified linear unit (ReLU) activation, then the solutions $Q_d\colon \mathbb R^d\to \mathbb R^{|A|}$, $d\in \mathbb{N}$, of the associated Bellman equations can also be approximated in the $L^2$-sense by DNNs with leaky ReLU activation whose numbers of parameters grow at most polynomially in both the dimension $d\in \mathbb{N}$ of the state space and the reciprocal $1/\varepsilon$ of the prescribed error $\varepsilon\in (0,1)$. Our proof relies on the recently introduced full-history recursive multilevel fixed-point (MLFP) approximation scheme.
Related papers
- $p$-Adic Polynomial Regression as Alternative to Neural Network for Approximating $p$-Adic Functions of Many Variables [55.2480439325792]
A regression model is constructed that allows approximating continuous functions with any degree of accuracy.<n>The proposed model can be considered as a simple alternative to possible $p$-adic models based on neural network architecture.
arXiv Detail & Related papers (2025-03-30T15:42:08Z) - Multilevel Picard approximations and deep neural networks with ReLU, leaky ReLU, and softplus activation overcome the curse of dimensionality when approximating semilinear parabolic partial differential equations in $L^p$-sense [5.179504118679301]
We prove that multilevel Picard approximations and deep neural networks with ReLU, leaky ReLU, and softplus activation are capable of approximating solutions of Kolmogorov PDEs in $Lmathfrakp$-sense.
arXiv Detail & Related papers (2024-09-30T15:53:24Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the $L^p$-sense [3.0874677990361246]
We show that deep neural networks (DNNs) have the expressive power to approximate PDE solutions without the curse of dimensionality (COD)<n>It is the key contribution of this work to generalize this result by establishing this statement in the $Lp$-sense with $pin(0,infty)$.
arXiv Detail & Related papers (2023-09-24T18:58:18Z) - Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space [0.0]
We study the problem of optimal control of a family of discrete-time countable state-space Markov Decision Processes.
We propose an algorithm based on Thompson sampling with dynamically-sized episodes.
We show that our algorithm can be applied to develop approximately optimal control algorithms.
arXiv Detail & Related papers (2023-06-05T03:57:16Z) - Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
Nonconvex Optimization [94.19177623349947]
Non-smooth non optimization problems emerge in machine learning and business making.
Two core challenges impede the development of efficient methods with finitetime convergence guarantee.
Two-phase versions of GFM and SGFM are also proposed and proven to achieve improved large-deviation results.
arXiv Detail & Related papers (2022-09-12T06:53:24Z) - Nearly Optimal Regret for Learning Adversarial MDPs with Linear Function
Approximation [92.3161051419884]
We study the reinforcement learning for finite-horizon episodic Markov decision processes with adversarial reward and full information feedback.
We show that it can achieve $tildeO(dHsqrtT)$ regret, where $H$ is the length of the episode.
We also prove a matching lower bound of $tildeOmega(dHsqrtT)$ up to logarithmic factors.
arXiv Detail & Related papers (2021-02-17T18:54:08Z) - Large-time asymptotics in deep learning [0.0]
We consider the impact of the final time $T$ (which may indicate the depth of a corresponding ResNet) in training.
For the classical $L2$--regularized empirical risk minimization problem, we show that the training error is at most of the order $mathcalOleft(frac1Tright)$.
In the setting of $ellp$--distance losses, we prove that both the training error and the optimal parameters are at most of the order $mathcalOleft(e-mu
arXiv Detail & Related papers (2020-08-06T07:33:17Z) - Upper Confidence Primal-Dual Reinforcement Learning for CMDP with
Adversarial Loss [145.54544979467872]
We consider online learning for episodically constrained Markov decision processes (CMDPs)
We propose a new emphupper confidence primal-dual algorithm, which only requires the trajectories sampled from the transition model.
Our analysis incorporates a new high-probability drift analysis of Lagrange multiplier processes into the celebrated regret analysis of upper confidence reinforcement learning.
arXiv Detail & Related papers (2020-03-02T05:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.