論文の概要: YM-WML: A new Yolo-based segmentation Model with Weighted Multi-class Loss for medical imaging
- arxiv url: http://arxiv.org/abs/2506.22955v1
- Date: Sat, 28 Jun 2025 17:21:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.644664
- Title: YM-WML: A new Yolo-based segmentation Model with Weighted Multi-class Loss for medical imaging
- Title(参考訳): YM-WML:医療画像用多クラス損失重み付きヨーロ型セグメンテーションモデル
- Authors: Haniyeh Nikkhah, Jafar Tanha, Mahdi Zarrin, SeyedEhsan Roshan, Amin Kazempour,
- Abstract要約: 本研究は,心臓画像分割の新しいモデルであるYM-WMLを提案する。
このモデルは、効果的な特徴抽出のための堅牢なバックボーン、マルチスケール特徴集約のためのYOLOv11ネック、アテンションベースのセグメンテーションヘッドを統合している。
ACDCデータセットでは、YM-WMLは91.02のDice similarity Coefficientを達成し、最先端の手法より優れている。
- 参考スコア(独自算出の注目度): 1.001970681951346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation poses significant challenges due to class imbalance and the complex structure of medical images. To address these challenges, this study proposes YM-WML, a novel model for cardiac image segmentation. The model integrates a robust backbone for effective feature extraction, a YOLOv11 neck for multi-scale feature aggregation, and an attention-based segmentation head for precise and accurate segmentation. To address class imbalance, we introduce the Weighted Multi-class Exponential (WME) loss function. On the ACDC dataset, YM-WML achieves a Dice Similarity Coefficient of 91.02, outperforming state-of-the-art methods. The model demonstrates stable training, accurate segmentation, and strong generalization, setting a new benchmark in cardiac segmentation tasks.
- Abstract(参考訳): 医用画像のセグメンテーションは、階級不均衡と医療用画像の複雑な構造が原因で大きな課題を生んでいる。
これらの課題に対処するために,心画像分割の新しいモデルYM-WMLを提案する。
このモデルは、効果的な特徴抽出のための堅牢なバックボーン、マルチスケール特徴集約のためのYOLOv11ネック、正確かつ正確なセグメンテーションのためのアテンションベースセグメンテーションヘッドを統合する。
クラス不均衡に対処するために、重み付き多クラス指数損失関数(WME)を導入する。
ACDCデータセットでは、YM-WMLは91.02のDice similarity Coefficientを達成し、最先端の手法より優れている。
このモデルは、安定なトレーニング、正確なセグメンテーション、強力な一般化を示し、心臓セグメンテーションタスクに新しいベンチマークを設定する。
関連論文リスト
- Foundation Model for Whole-Heart Segmentation: Leveraging Student-Teacher Learning in Multi-Modal Medical Imaging [0.510750648708198]
心血管疾患の診断にはCTとMRIによる全肝分画が不可欠である。
既存の方法は、モダリティ固有のバイアスと、広範なラベル付きデータセットの必要性に苦慮している。
学生-教師アーキテクチャに基づく自己指導型学習フレームワークを用いて,全音節セグメンテーションのための基礎モデルを提案する。
論文 参考訳(メタデータ) (2025-03-24T14:47:54Z) - Partially Supervised Unpaired Multi-Modal Learning for Label-Efficient Medical Image Segmentation [53.723234136550055]
我々は、新しい学習パラダイムを部分教師付き無ペア型マルチモーダルラーニング(PSUMML)と呼ぶ。
そこで我々は,DEST (Ensembled Self-Training) フレームワークを用いた新しい部分クラス適応法を提案する。
我々のフレームワークは、部分的にラベル付けされていないマルチモーダルデータを用いて学習するためのモダリティ特定正規化層を持つコンパクトなセグメンテーションネットワークで構成されている。
論文 参考訳(メタデータ) (2025-03-07T07:22:42Z) - Lagrange Duality and Compound Multi-Attention Transformer for Semi-Supervised Medical Image Segmentation [27.758157788769253]
半教師付き学習における総合的な学習目標として,境界認識型コントラスト損失と統合されたラグランジュ二重性損失(LDC)を提案する。
また、ResUNetとTransformerの強みを相乗化する新しいネットワークであるCMAformerを紹介する。
以上の結果から,CMAformerは機能融合フレームワークと新たな一貫性の喪失と相まって,半教師付き学習アンサンブルにおいて強い相補性を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-09-12T06:52:46Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - A Multi-Task Cross-Task Learning Architecture for Ad-hoc Uncertainty
Estimation in 3D Cardiac MRI Image Segmentation [0.0]
画素レベル(セグメンテーション)タスクと幾何学レベル(距離マップ)タスクの相関を強制するマルチタスククロスタスク学習整合性アプローチを提案する。
本研究は、与えられたモデルから低品質セグメンテーションをフラグする我々のモデルの可能性をさらに示すものである。
論文 参考訳(メタデータ) (2021-09-16T03:53:24Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。