A novel approach to multi-image quantum encryption/decryption using qudits
- URL: http://arxiv.org/abs/2506.23039v1
- Date: Sat, 28 Jun 2025 23:58:30 GMT
- Title: A novel approach to multi-image quantum encryption/decryption using qudits
- Authors: Claire Levaillant,
- Abstract summary: We introduce groundbreaking techniques in image encryption, assuming the existence of quantum computing ressources functioning with qudits.<n>Our quantum representation of color multi-image is based on space-filling curves and allows to reduce the storage space.<n>We generalize the quantum baker map, so that it may scramble two n-qudits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce groundbreaking techniques in image encryption, assuming the existence of quantum computing ressources functioning with qudits, where d is a power of 2. Our quantum representation of color multi-image is based on space-filling curves and allows to reduce the storage space. We generalize the quantum baker map, so that it may scramble two n-qudits. By doing so, we enlarge its parameter space exponentially, leading to a better security. We define two new concepts of mixed scrambling and mixed diffusion, and present a variety of schemes, depending on the needs of the users.
Related papers
- Multi-image quantum encryption scheme using blocks of bit planes and images [0.0]
We present a multi-image quantum encryption/decryption scheme based on blocks of bit planes and images.<n>We provide a quantum circuit for the quantum baker map.
arXiv Detail & Related papers (2025-03-30T01:14:58Z) - Quantum multiple gray scale images encryption scheme in the bit plane
representation model [0.0]
We present a novel way to encrypt/decrypt multiple images using a quantum computer.
Our encryption scheme is based on a two-stage scrambling of the images and of the bit planes on one hand and of the pixel positions on the other hand.
arXiv Detail & Related papers (2024-01-01T15:25:54Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light [40.96261204117952]
In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states.
The experiment was built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source.
Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations.
arXiv Detail & Related papers (2022-09-17T12:59:09Z) - A hybrid-qudit representation of digital RGB images [7.766921168069532]
We use two entangled quantum registers constituting of total 7 qutrits to encode the color channels and their intensities.
We generalize the existing encoding methods by using both qubits and qutrits to encode the pixel positions of a rectangular image.
This hybrid-qudit approach aligns well with the current progress of NISQ devices in incorporating higher dimensional quantum systems.
arXiv Detail & Related papers (2022-07-25T21:57:46Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - A hybrid quantum image edge detector for the NISQ era [62.997667081978825]
We propose a hybrid method for quantum edge detection based on the idea of a quantum artificial neuron.
Our method can be practically implemented on quantum computers, especially on those of the current noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2022-03-22T22:02:09Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - A practical quantum encryption protocol with varying encryption
configurations [0.0]
We propose a quantum encryption protocol that utilizes a quantum algorithm to create blocks oftext ciphers based on quantum states.
The main feature of our quantum encryption protocol is that the encryption configuration of each block is determined by the previous blocks.
arXiv Detail & Related papers (2021-01-22T20:09:03Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - A quantum encryption design featuring confusion, diffusion, and mode of
operation [0.0]
We propose a non-OTP quantum encryption scheme utilizing a quantum state creation process to encrypt messages.
As essentially a non-OTP quantum block cipher the method stands out against existing methods with the following features.
arXiv Detail & Related papers (2020-10-06T22:23:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.