Physics informed guided diffusion for accelerated multi-parametric MRI reconstruction
- URL: http://arxiv.org/abs/2506.23311v1
- Date: Sun, 29 Jun 2025 16:00:32 GMT
- Title: Physics informed guided diffusion for accelerated multi-parametric MRI reconstruction
- Authors: Perla Mayo, Carolin M. Pirkl, Alin Achim, Bjoern Menze, Mohammad Golbabaee,
- Abstract summary: We introduce MRF-DiPh, a physics informed denoising diffusion approach for multiparametric tissue mapping.<n> Numerical experiments on in-vivo brain scans data show that MRF-DiPh outperforms deep learning and compressed sensing MRF baselines.
- Score: 4.833916353245013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce MRF-DiPh, a novel physics informed denoising diffusion approach for multiparametric tissue mapping from highly accelerated, transient-state quantitative MRI acquisitions like Magnetic Resonance Fingerprinting (MRF). Our method is derived from a proximal splitting formulation, incorporating a pretrained denoising diffusion model as an effective image prior to regularize the MRF inverse problem. Further, during reconstruction it simultaneously enforces two key physical constraints: (1) k-space measurement consistency and (2) adherence to the Bloch response model. Numerical experiments on in-vivo brain scans data show that MRF-DiPh outperforms deep learning and compressed sensing MRF baselines, providing more accurate parameter maps while better preserving measurement fidelity and physical model consistency-critical for solving reliably inverse problems in medical imaging.
Related papers
- Domain-conditioned and Temporal-guided Diffusion Modeling for Accelerated Dynamic MRI Reconstruction [5.116849432626762]
The dDiMo framework integrates temporal information from time-resolved dimensions.<n>The proposed model was tested on two types of MRI data: cardiac-acquired multi-coil MRI and Golden-Radial-Angle-acquired multicoil free-acquired MRI.
arXiv Detail & Related papers (2025-01-16T05:39:50Z) - LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [4.499605583818247]
Some works attempted to solve MRI reconstruction with diffusion models, but these methods operate directly in pixel space.<n>Latent diffusion models, pre-trained on natural images with rich visual priors, are expected to solve the high computational cost problem in MRI reconstruction.<n>A novel Latent Diffusion Prior-based undersampled MRI reconstruction (LDPM) method is proposed.
arXiv Detail & Related papers (2024-11-05T09:51:59Z) - Denoising Diffusion Probabilistic Models for Magnetic Resonance Fingerprinting [7.379135816468852]
Magnetic Resonance Fingerprinting (MRF) is a time-efficient approach to quantitative MRI.<n> achieving accurate reconstructions remains challenging, particularly in highly accelerated and undersampled acquisitions.<n>We propose for the first time a conditional diffusion probabilistic model for MRF image reconstruction.
arXiv Detail & Related papers (2024-10-29T21:38:54Z) - qMRI Diffuser: Quantitative T1 Mapping of the Brain using a Denoising Diffusion Probabilistic Model [1.1278063431495107]
Quantitative MRI (qMRI) offers significant advantages over weighted images by providing objective parameters related to tissue properties.
Deep learning-based methods have demonstrated effectiveness in estimating quantitative maps from series of weighted images.
We present qMRI diffuser, a novel approach to qMRI utilising deep generative models.
arXiv Detail & Related papers (2024-07-23T13:49:19Z) - Phy-Diff: Physics-guided Hourglass Diffusion Model for Diffusion MRI Synthesis [45.074243735766]
We propose a physics-guided diffusion model to generate high-quality dMRI.
Our model introduces the physical principles of dMRI in the noise evolution in the diffusion process.
Our experiment results show that our method outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-06-05T07:09:19Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction [3.083408283778178]
This study introduces a novel approach for image reconstruction based on a diffusion model conditioned on the native data domain.
The proposed method demonstrates a significant promise, particularly for reconstructing images at high acceleration factors.
arXiv Detail & Related papers (2023-09-02T01:33:50Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.