論文の概要: Towards foundational LiDAR world models with efficient latent flow matching
- arxiv url: http://arxiv.org/abs/2506.23434v1
- Date: Mon, 30 Jun 2025 00:16:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.873389
- Title: Towards foundational LiDAR world models with efficient latent flow matching
- Title(参考訳): 効率的な潜水流マッチングを用いた基礎的LiDAR世界モデルに向けて
- Authors: Tianran Liu, Shengwen Zhao, Nicholas Rhinehart,
- Abstract要約: 既存のLiDARワールドモデルは狭義に訓練されており、それぞれのモデルは構築されたドメインに限られる。
3つの要求シナリオにまたがる最初の体系的ドメイン転送研究を行う。
微調整データの量が異なるため,実験の結果,1つの事前学習モデルで最大11%の絶対的改善が達成できることがわかった。
- 参考スコア(独自算出の注目度): 9.86884512471034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR-based world models offer more structured and geometry-aware representations than their image-based counterparts. However, existing LiDAR world models are narrowly trained; each model excels only in the domain for which it was built. Can we develop LiDAR world models that exhibit strong transferability across multiple domains? We conduct the first systematic domain transfer study across three demanding scenarios: (i) outdoor to indoor generalization, (ii) sparse-beam \& dense-beam adaptation, and (iii) non-semantic to semantic transfer. Given different amounts of fine-tuning data, our experiments show that a single pre-trained model can achieve up to 11% absolute improvement (83\% relative) over training from scratch and outperforms training from scratch in 30/36 of our comparisons. This transferability of dynamic learning significantly reduces the reliance on manually annotated data for semantic occupancy forecasting: our method exceed the previous semantic occupancy forecasting models with only 5% of the labeled training data required by prior models. We also observed inefficiencies of current LiDAR world models, mainly through their under-compression of LiDAR data and inefficient training objectives. To address this, we propose a latent conditional flow matching (CFM)-based frameworks that achieves state-of-the-art reconstruction accuracy using only half the training data and a compression ratio 6 times higher than that of prior methods. Our model achieves SOTA performance on future-trajectory-conditioned semantic occupancy forecasting while being 23x more computationally efficient (a 28x FPS speedup); and achieves SOTA performance on semantic occupancy forecasting while being 2x more computationally efficient (a 1.1x FPS speedup).
- Abstract(参考訳): LiDARベースのワールドモデルは、画像ベースのモデルよりも構造的で幾何学的な表現を提供する。
しかし、既存のLiDARワールドモデルは狭義の訓練を受けており、それぞれのモデルは構築されたドメインに限られている。
複数の領域にまたがる強い転送可能性を示すLiDARワールドモデルの開発は可能か?
3つの要求シナリオにまたがる、最初の体系的なドメイン転送研究を行います。
(i)屋外から屋内への一般化
(二)スパースビーム \&高密度ビーム適応、及び
(iii)意味伝達に非意味的。
実験の結果,1つの事前学習モデルでは,スクラッチのトレーニングよりも最大11%の絶対的改善(83.%)を達成でき,スクラッチのトレーニングを30/36で上回る結果が得られた。
この動的学習の伝達性は,先行モデルで必要とされるラベル付きトレーニングデータの5%に過ぎず,従来の意味的占有予測モデルを超え,手作業による意味的占有予測への注釈付きデータへの依存を著しく低減させる。
また,現在のLiDAR世界モデルの非効率性も,LiDARデータの低圧縮と非効率なトレーニング目標によって確認した。
そこで本研究では,従来の手法に比べてトレーニングデータの半分と圧縮率を6倍に抑えて,最先端の復元精度を実現するためのCFM(Latent Conditional Flow Match)ベースのフレームワークを提案する。
本モデルでは, 将来の軌道条件付きセマンティック占有予測におけるSOTA性能を, 計算効率が23倍(28倍FPS高速化)で達成し, 計算効率が2倍(1.1倍FPS高速化)で, セマンティック占有予測におけるSOTA性能を実現する。
関連論文リスト
- Enhancing Training Data Attribution with Representational Optimization [57.61977909113113]
トレーニングデータ属性法は、トレーニングデータがモデルの予測にどのように影響するかを測定することを目的としている。
本稿では,タスク固有表現とモデル整合表現をTDAで明示的に学習することで,このギャップを埋める表現ベースアプローチであるAirRepを提案する。
AirRepは、属性品質に合わせて調整されたトレーニング可能なエンコーダと、グループワイドの影響を正確に見積もるアテンションベースのプール機構の2つの重要なイノベーションを紹介している。
論文 参考訳(メタデータ) (2025-05-24T05:17:53Z) - Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
自己教師付き学習(SSL)により、地球観測のための視覚基盤モデルの開発が可能になった。
EOでは、この課題は衛星画像に共通する冗長性と重尾分布によって増幅される。
本稿では,データセットの多様性とバランスを最大化し,SSL事前トレーニングを改善するために設計された動的データセットプルーニング戦略を提案する。
論文 参考訳(メタデータ) (2025-04-09T15:13:26Z) - An Efficient Occupancy World Model via Decoupled Dynamic Flow and Image-assisted Training [50.71892161377806]
DFIT-OccWorldは、分離されたダイナミックフローとイメージアシストトレーニング戦略を活用する、効率的な3D占有世界モデルである。
提案モデルでは, 静止ボクセルはポーズ変換により容易に得られるのに対し, 既存のボクセルフローを用いて既存の観測を歪曲することで, 将来のダイナミックボクセルを予測できる。
論文 参考訳(メタデータ) (2024-12-18T12:10:33Z) - Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational Deep Learning(DL)モデルは、多種多様で多様なデータセットに基づいてトレーニングされた一般的なモデルである。
本稿では,無線信号を用いた基礎DLモデルの事前学習のための,新しい自己教師型学習手法であるMasked Spectrogram Modelingを紹介する。
論文 参考訳(メタデータ) (2024-11-14T23:56:57Z) - DOME: Taming Diffusion Model into High-Fidelity Controllable Occupancy World Model [14.996395953240699]
DOMEは拡散に基づく世界モデルであり、過去の占有観察に基づいて将来の占有枠を予測する。
この世界のモデルが環境の進化を捉える能力は、自動運転の計画に不可欠である。
論文 参考訳(メタデータ) (2024-10-14T12:24:32Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review(LFR)は、モデルの学習進捗に適応する動的トレーニングアプローチである。
LFRは、データブロック(トークンのシーケンス)にわたるモデルの学習パフォーマンスを追跡し、データセットの困難な領域を再検討する。
フルデータセットでトレーニングされたベースラインモデルと比較して、LFRは一貫して低いパープレキシティと高い精度を達成した。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
本稿では,大規模データに基づく基礎モデルの事前学習と微調整を効果的に行うための第1種フレームワークを提案する。
我々はこの枠組みを利用して、マルチスペクトル衛星画像の1TB以上を事前トレーニングしたトランスフォーマーベースの基礎モデルであるPrithviを開発した。
論文 参考訳(メタデータ) (2023-10-28T10:19:55Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
トレーニング-ファインタニングアプローチは、さまざまな下流データセットとタスクをまたいだトレーニング済みのバックボーンを微調整することで、ラベル付けの負担を軽減することができる。
本稿では, 一般表現学習が, 占領予測のタスクを通じて達成できることを, 初めて示す。
本研究は,LiDAR 点の理解を促進するとともに,LiDAR の事前訓練における今後の進歩の道を開くことを目的とする。
論文 参考訳(メタデータ) (2023-09-19T11:13:01Z) - LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models [1.1965844936801797]
3D LiDARデータの生成モデリングは、自律移動ロボットに有望な応用をもたらす新たな課題である。
我々は,多種多様かつ高忠実な3Dシーンポイント雲を生成可能な,LiDARデータのための新しい生成モデルR2DMを提案する。
本手法は拡散確率モデル (DDPM) を用いて構築され, 生成モデルフレームワークにおいて顕著な結果が得られた。
論文 参考訳(メタデータ) (2023-09-17T12:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。