論文の概要: What to Keep and What to Drop: Adaptive Table Filtering Framework
- arxiv url: http://arxiv.org/abs/2506.23463v3
- Date: Mon, 04 Aug 2025 01:06:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 14:07:57.28747
- Title: What to Keep and What to Drop: Adaptive Table Filtering Framework
- Title(参考訳): 何を維持するか、何を落とすか:Adaptive Table Filtering Framework
- Authors: WonJune Jang,
- Abstract要約: ATFは、大きなテーブルのためのモジュール的で質問対応のフィルタリングパイプラインである。
非形式的な列と行を列記述、クラスタリング、スパースセンスアライメントスコアを使って具現化する。
実験によると、ATFはテーブルセルを70%削減し、ドメイン外のTableQAタスクのパフォーマンスを向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) for table-based reasoning often struggle with large tables due to input length limits. We propose ATF (Adaptive Table Filtering Framework), a modular and question-aware filtering pipeline that prunes uninformative columns and rows using LLM-generated column descriptions, clustering, and sparse-dense alignment scores. ATF integrates seamlessly with existing models (e.g., TAPAS, TAPEX) without retraining. Experiments show that ATF reduces table cells by 70%, boosting performance on out-of-domain TableQA tasks while causing slight performance drops on Table Fact Verification, where full-table context is more critical. These results highlight ATF's ability to adaptively balance informativeness and minimalism across tasks. Our code available at: https://github.com/torijune/ATF-Adaptive-Table-Filtering-Framework
- Abstract(参考訳): テーブルベースの推論のための大規模言語モデル(LLM)は、入力長制限のため、しばしば大きなテーブルと競合する。
本研究では,LLM生成カラム記述,クラスタリング,スパース・ディッセンスアライメントスコアを用いて,不定形カラムや行を抽出するモジュール型かつ問合せ対応のフィルタリングパイプラインであるATFを提案する。
ATFは、リトレーニングなしで既存のモデル(例えば、TAAAS、TAPEX)とシームレスに統合する。
実験の結果、ATFはテーブルセルを70%削減し、ドメイン外のTableQAタスクのパフォーマンスを向上する一方で、テーブルファクト検証ではフルテーブルコンテキストがより重要となるパフォーマンス低下を引き起こすことがわかった。
これらの結果は、タスク間で情報量と最小主義を適応的にバランスさせるATFの能力を強調している。
https://github.com/torijune/ATF-Adaptive-Table-Filtering-Framework
関連論文リスト
- TableEval: A Real-World Benchmark for Complex, Multilingual, and Multi-Structured Table Question Answering [18.173773939709733]
既存のTableQAベンチマークは、単純なフラットテーブルにフォーカスし、データ漏洩に悩まされることがしばしばある。
現実的なTableQAタスク上でLLMを評価するために設計された新しいベンチマークであるTableEvalを紹介する。
データ漏洩のリスクを最小限に抑えるため、最近の実世界の文書からすべてのデータを収集する。
論文 参考訳(メタデータ) (2025-06-04T13:39:01Z) - Weaver: Interweaving SQL and LLM for Table Reasoning [63.09519234853953]
Weaverは、構造化データ検索のためのsqlとセマンティック処理のためのLLMを組み合わせたフレキシブルなステップバイステッププランを生成する。
Weaverは、4つのTableQAデータセットの最先端メソッドを一貫して上回り、API呼び出しとエラー率の両方を削減する。
論文 参考訳(メタデータ) (2025-05-25T03:27:37Z) - General Table Question Answering via Answer-Formula Joint Generation [27.599437384914186]
テーブル質問応答(TableQA)メソッドは、大きな言語モデル(LLM)に応答テキストを生成する。
これらの方法には、特定の質問タイプやテーブル構造を扱うための汎用性がない。
複数種類のテーブル上で複数のタスクを同時に解決する汎用テーブル応答フレームワークである textttTabAF を提案する。
論文 参考訳(メタデータ) (2025-03-16T03:51:06Z) - Piece of Table: A Divide-and-Conquer Approach for Selecting Subtables in Table Question Answering [20.926770550682964]
PieTa - サブテーブルベースの質問応答(QA)のための新しいフレームワーク
テーブルを小さなウィンドウに分割する反復的なプロセスを通じて動作し、LMを使用して各ウィンドウ内で関連する細胞を選択し、これらの細胞をサブテーブルにマージする。
従来のサブテーブルベースのQAアプローチよりもパフォーマンスが向上している。
論文 参考訳(メタデータ) (2024-12-10T16:08:14Z) - FLEXTAF: Enhancing Table Reasoning with Flexible Tabular Formats [48.47559543509975]
フレキシブルフォーマットを用いてテーブル推論性能を向上させるためのFLEXTAF-SingleとFLEXTAF-Voteを提案する。
WikiTableQuestionsとTabFactに関する我々の実験は、平均的な2.3%と4.8%の大幅な改善を示している。
論文 参考訳(メタデータ) (2024-08-16T17:00:11Z) - TabSQLify: Enhancing Reasoning Capabilities of LLMs Through Table Decomposition [6.253771639590562]
テーブル推論は、自然言語の質問と構造化データの両方を理解する必要がある難しいタスクである。
テキスト・ツー・ジェネレーションを利用したテーブルを,より小さく,関連するサブテーブルに分解する新しい方法であるTabifyを提案する。
WikiTQベンチマークでは,64.7%の精度で精度が向上した。
論文 参考訳(メタデータ) (2024-04-15T21:42:20Z) - OpenTab: Advancing Large Language Models as Open-domain Table Reasoners [38.29047314758911]
OpenTabは、Large Language Models (LLM)を利用したオープンドメインテーブル推論フレームワークである。
OpenTabはオープンドメインとクローズドドメインの両方でベースラインを大幅に上回り、最大21.5%の精度を実現している。
論文 参考訳(メタデータ) (2024-02-22T08:01:01Z) - TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks [90.00817095558094]
事前データ対応ネットワーク(PFN)は、事前学習とコンテキスト内学習を利用して、1つのフォワードパスで新しいタスクの強力なパフォーマンスを実現する。
我々は、大規模なデータセットをより小さな学習コンテキストに圧縮するPFNのパラメータ効率の良い微調整戦略であるTuneTablesを紹介した。
我々は、TuneTablesを解釈可能性ツールとして使用することができ、公平性目標を最適化することでバイアスを軽減することができることを示した。
論文 参考訳(メタデータ) (2024-02-17T00:02:23Z) - CABINET: Content Relevance based Noise Reduction for Table Question
Answering [21.899938933558396]
CABINET(Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering)は、大規模言語モデル(LLM)が外部情報を抑制することで関連するデータに集中できるようにするフレームワークである。
ノイズを導出し、様々なサイズのテーブル上でパフォーマンスを維持し、WikiTQ、FeTaQA、Wikiデータセット上で新しいSoTAパフォーマンスを確立する。
論文 参考訳(メタデータ) (2024-02-02T05:48:39Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - MultiTabQA: Generating Tabular Answers for Multi-Table Question
Answering [61.48881995121938]
実世界のクエリは本質的に複雑で、リレーショナルデータベースやWebページ内の複数のテーブルにまたがることが多い。
我々のモデルであるMultiTabQAは、複数のテーブル上の質問に答えるだけでなく、表形式の回答を生成するために一般化する。
論文 参考訳(メタデータ) (2023-05-22T08:25:15Z) - OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering [106.73213656603453]
最小限のアノテーションによるテーブルベースのQAモデルを構築した。
本稿では、自然データと合成データの両方を消費する全能事前学習手法を提案する。
論文 参考訳(メタデータ) (2022-07-08T01:23:45Z) - Table Retrieval May Not Necessitate Table-specific Model Design [83.27735758203089]
テーブル検索のタスクに焦点をあてて、"テーブル固有のモデル設計はテーブル検索に必要か?
自然質問データセット (NQ-table) の表に基づく分析の結果, 70%以上の症例では構造が無視できる役割を担っていることがわかった。
次に、テーブル構造、すなわち補助列/カラム埋め込み、ハードアテンションマスク、ソフトリレーションに基づくアテンションバイアスを明示的にエンコードする3つのモジュールを実験する。
いずれも大きな改善は得られず、テーブル固有のモデル設計がテーブル検索に不要である可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:35:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。