AttentionGS: Towards Initialization-Free 3D Gaussian Splatting via Structural Attention
- URL: http://arxiv.org/abs/2506.23611v1
- Date: Mon, 30 Jun 2025 08:16:43 GMT
- Title: AttentionGS: Towards Initialization-Free 3D Gaussian Splatting via Structural Attention
- Authors: Ziao Liu, Zhenjia Li, Yifeng Shi, Xiangang Li,
- Abstract summary: 3D Gaussian Splatting (3DGS) is a powerful alternative to Neural Radiance Fields (NeRF)<n>It relies on high-quality point clouds from Structure-from-Motion (SfM)<n>We propose AttentionGS, a novel framework that eliminates the dependency on high-quality initial point clouds.
- Score: 11.400892739301804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3DGS) is a powerful alternative to Neural Radiance Fields (NeRF), excelling in complex scene reconstruction and efficient rendering. However, it relies on high-quality point clouds from Structure-from-Motion (SfM), limiting its applicability. SfM also fails in texture-deficient or constrained-view scenarios, causing severe degradation in 3DGS reconstruction. To address this limitation, we propose AttentionGS, a novel framework that eliminates the dependency on high-quality initial point clouds by leveraging structural attention for direct 3D reconstruction from randomly initialization. In the early training stage, we introduce geometric attention to rapidly recover the global scene structure. As training progresses, we incorporate texture attention to refine fine-grained details and enhance rendering quality. Furthermore, we employ opacity-weighted gradients to guide Gaussian densification, leading to improved surface reconstruction. Extensive experiments on multiple benchmark datasets demonstrate that AttentionGS significantly outperforms state-of-the-art methods, particularly in scenarios where point cloud initialization is unreliable. Our approach paves the way for more robust and flexible 3D Gaussian Splatting in real-world applications.
Related papers
- Intern-GS: Vision Model Guided Sparse-View 3D Gaussian Splatting [95.61137026932062]
Intern-GS is a novel approach to enhance the process of sparse-view Gaussian splatting.<n>We show that Intern-GS achieves state-of-the-art rendering quality across diverse datasets.
arXiv Detail & Related papers (2025-05-27T05:17:49Z) - QuickSplat: Fast 3D Surface Reconstruction via Learned Gaussian Initialization [69.50126552763157]
Surface reconstruction is fundamental to computer vision and graphics, enabling applications in 3D modeling, mixed reality, robotics, and more.<n>Existing approaches based on rendering obtain promising results, but optimize on a per-scene basis, resulting in a slow optimization that can struggle to model textureless regions.<n>We introduce QuickSplat, which learns data-driven priors to generate dense initializations for 2D gaussian splatting optimization of large-scale indoor scenes.
arXiv Detail & Related papers (2025-05-08T18:43:26Z) - FreeSplat++: Generalizable 3D Gaussian Splatting for Efficient Indoor Scene Reconstruction [50.534213038479926]
FreeSplat++ is an alternative approach to large-scale indoor whole-scene reconstruction.<n>Our method with depth-regularized per-scene fine-tuning demonstrates substantial improvements in reconstruction accuracy and a notable reduction in training time.
arXiv Detail & Related papers (2025-03-29T06:22:08Z) - StructGS: Adaptive Spherical Harmonics and Rendering Enhancements for Superior 3D Gaussian Splatting [5.759434800012218]
StructGS is a framework that enhances 3D Gaussian Splatting (3DGS) for improved novel-view synthesis in 3D reconstruction.<n>Our framework significantly reduces computational redundancy, enhances detail capture and supports high-resolution rendering from low-resolution inputs.
arXiv Detail & Related papers (2025-03-09T05:39:44Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
We introduce MonoGSDF, a novel method that couples primitives with a neural Signed Distance Field (SDF) for high-quality reconstruction.<n>To handle arbitrary-scale scenes, we propose a scaling strategy for robust generalization.<n>Experiments on real-world datasets outperforms prior methods while maintaining efficiency.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.<n>3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - Dense Point Clouds Matter: Dust-GS for Scene Reconstruction from Sparse Viewpoints [9.069919085326]
3D Gaussian Splatting (3DGS) has demonstrated remarkable performance in scene synthesis and novel view synthesis tasks.
In this study, we present Dust-GS, a novel framework specifically designed to overcome the limitations of 3DGS in sparse viewpoint conditions.
arXiv Detail & Related papers (2024-09-13T07:59:15Z) - Relaxing Accurate Initialization Constraint for 3D Gaussian Splatting [29.58220473268378]
We propose a novel optimization strategy dubbed RAIN-GS (Relaing Accurate Initialization Constraint for 3D Gaussian Splatting)
RAIN-GS successfully trains 3D Gaussians from sub-optimal point cloud (e.g., randomly point cloud)
We demonstrate the efficacy of our strategy through quantitative and qualitative comparisons on multiple datasets, where RAIN-GS trained with random point cloud achieves performance on-par with or even better than 3DGS trained with accurate SfM point cloud.
arXiv Detail & Related papers (2024-03-14T14:04:21Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.