論文の概要: The Kubernetes Network Driver Model: A Composable Architecture for High-Performance Networking
- arxiv url: http://arxiv.org/abs/2506.23628v1
- Date: Mon, 30 Jun 2025 08:45:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.98236
- Title: The Kubernetes Network Driver Model: A Composable Architecture for High-Performance Networking
- Title(参考訳): Kubernetes Network Driver Model: 高性能ネットワークのための構成可能なアーキテクチャ
- Authors: Antonio Ojea,
- Abstract要約: 従来のネットワークは、AI/MLと進化中のTelcoインフラストラクチャのエスカレート要求を満たすのに苦労している。
本稿では、現在の命令型プロビジョニングとAPI制限を克服するために設計された、トランスフォーメーション、モジュール、宣言型アーキテクチャであるネットワークドライバ(KND)を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional Kubernetes networking struggles to meet the escalating demands of AI/ML and evolving Telco infrastructure. This paper introduces Kubernetes Network Drivers (KNDs), a transformative, modular, and declarative architecture designed to overcome current imperative provisioning and API limitations. KNDs integrate network resource management into Kubernetes' core by utilizing Dynamic Resource Allocation (DRA), Node Resource Interface (NRI) improvements, and upcoming OCI Runtime Specification changes. Our DraNet implementation demonstrates declarative attachment of network interfaces, including Remote Direct Memory Access (RDMA) devices, significantly boosting high-performance AI/ML workloads. This capability enables sophisticated cloud-native applications and lays crucial groundwork for future Telco solutions, fostering a "galaxy" of specialized KNDs for enhanced application delivery and reduced operational complexity.
- Abstract(参考訳): 従来のKubernetesネットワーキングは、AI/MLと進化中のTelcoインフラストラクチャのエスカレート要求を満たすために苦労している。
本稿では、現在の命令型プロビジョニングとAPI制限を克服するために設計された、トランスフォーメーション、モジュール、宣言型アーキテクチャであるKubernetes Network Drivers(KNDs)を紹介する。
KNDは、動的リソース割り当て(DRA)、ノードリソースインターフェース(NRI)の改善、今後のOCIランタイム仕様の変更を活用して、ネットワークリソース管理をKubernetesのコアに統合する。
私たちのDraNet実装は、リモートダイレクトメモリアクセス(RDMA)デバイスを含むネットワークインターフェースの宣言的なアタッチメントを示し、高性能なAI/MLワークロードを大幅に向上します。
この機能は、高度なクラウドネイティブアプリケーションを可能にし、将来のTelcoソリューションにとって重要な基盤を築き、アプリケーションデリバリの強化と運用上の複雑さの低減を目的とした、特殊なKNDの“ギャラックス”を育む。
関連論文リスト
- INSIGHT: A Survey of In-Network Systems for Intelligent, High-Efficiency AI and Topology Optimization [43.37351326629751]
インネットワークAI(In-network AI)は、ネットワークインフラストラクチャにおける人工知能(AI)のエスカレート要求に対処するための、変革的なアプローチである。
本稿では,AIのためのネットワーク内計算の最適化に関する包括的な分析を行う。
リソース制約のあるネットワークデバイスにAIモデルをマッピングするための方法論を調べ、メモリや計算能力の制限といった課題に対処する。
論文 参考訳(メタデータ) (2025-05-30T06:47:55Z) - Large-Scale AI in Telecom: Charting the Roadmap for Innovation, Scalability, and Enhanced Digital Experiences [212.5544743797899]
大型通信モデル(LTM)は、現代の通信ネットワークが直面する複雑な課題に対処するために設計されたAIモデルである。
本稿は、LTMのアーキテクチャとデプロイメント戦略から、ネットワーク管理、リソース割り当て、最適化における彼らのアプリケーションまで、幅広いトピックについて論じる。
論文 参考訳(メタデータ) (2025-03-06T07:53:24Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flowは、デバイス、エッジノード、クラウドサーバ間で利用可能な異種リソースを共同で活用することで、推論プロセスを合理化するフレームワークである。
この記事では、AI Flowのモチベーション、課題、原則を特定するためのポジションペーパーとして機能する。
論文 参考訳(メタデータ) (2024-11-19T12:51:17Z) - Large Language Models meet Network Slicing Management and Orchestration [0.3644165342767221]
本稿では,Large Language Models (LLM) とマルチエージェントシステムを利用したネットワークスライシングの今後の展望を提案する。
このフレームワークの実装に伴う課題と、それを緩和する潜在的なソリューションについて議論する。
論文 参考訳(メタデータ) (2024-03-20T16:29:52Z) - A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication [53.78269720999609]
本稿では,セマンティック通信(SemCom)を利用したAIGC(SemAIGC)の生成と伝送フレームワークを提案する。
具体的には、セマンティックエンコーダとデコーダに拡散モデルを統合し、ワークロード調整可能なトランシーバを設計する。
提案するSemAIGCフレームワークは,従来の手法に比べてレイテンシとコンテンツ品質が優れていることがシミュレーションによって検証された。
論文 参考訳(メタデータ) (2023-10-26T18:05:22Z) - Modular Simulation Environment Towards OTN AI-based Solutions [4.109840601429085]
次世代ネットワークを開発する際のハードルは、大規模なデータセットが利用可能であることだ。
この要求により、研究者は必要な体積を生成するために実行可能なシミュレーション環境を探すことができた。
ユーザの利用可能なリソースに適応するためのモジュラーソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-19T19:38:31Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Deep Reinforcement Learning-Aided RAN Slicing Enforcement for B5G
Latency Sensitive Services [10.718353079920007]
本論文では、無線アクセスネットワークスライスと無線リソース管理に対処するために、ネットワークの端でDeep Reinforcement Learningを利用する新しいアーキテクチャを提案する。
提案手法の有効性を,自律走行型ユースケースを考慮したコンピュータシミュレーションにより検討した。
論文 参考訳(メタデータ) (2021-03-18T14:18:34Z) - Deep-Mobility: A Deep Learning Approach for an Efficient and Reliable 5G
Handover [0.0]
5Gセルネットワークは世界中に展開されており、このアーキテクチャは超高密度ネットワーク(UDN)デプロイメントをサポートしている。
小細胞はエンドユーザに5G接続を提供する上で非常に重要な役割を担います。
従来のハンドオーバ改善方式とは対照的に,ネットワークモビリティを管理するために,深層学習ニューラルネットワーク(DLNN)を実装した「ディープ・モビリティ」モデルを開発した。
論文 参考訳(メタデータ) (2021-01-17T00:31:37Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。