HiNeuS: High-fidelity Neural Surface Mitigating Low-texture and Reflective Ambiguity
- URL: http://arxiv.org/abs/2506.23854v1
- Date: Mon, 30 Jun 2025 13:45:25 GMT
- Title: HiNeuS: High-fidelity Neural Surface Mitigating Low-texture and Reflective Ambiguity
- Authors: Yida Wang, Xueyang Zhang, Kun Zhan, Peng Jia, Xianpeng Lang,
- Abstract summary: HiNeuS is a unified framework that holistically addresses three core limitations in existing approaches.<n>We introduce: 1) Differential visibility verification through SDF-guided ray tracing; 2) Planar-conformal regularization via ray-aligned geometry patches; and 3) Physically-grounded Eikonal relaxation that dynamically modulates geometric constraints based on local gradients.
- Score: 8.74691272469226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural surface reconstruction faces persistent challenges in reconciling geometric fidelity with photometric consistency under complex scene conditions. We present HiNeuS, a unified framework that holistically addresses three core limitations in existing approaches: multi-view radiance inconsistency, missing keypoints in textureless regions, and structural degradation from over-enforced Eikonal constraints during joint optimization. To resolve these issues through a unified pipeline, we introduce: 1) Differential visibility verification through SDF-guided ray tracing, resolving reflection ambiguities via continuous occlusion modeling; 2) Planar-conformal regularization via ray-aligned geometry patches that enforce local surface coherence while preserving sharp edges through adaptive appearance weighting; and 3) Physically-grounded Eikonal relaxation that dynamically modulates geometric constraints based on local radiance gradients, enabling detail preservation without sacrificing global regularity. Unlike prior methods that handle these aspects through sequential optimizations or isolated modules, our approach achieves cohesive integration where appearance-geometry constraints evolve synergistically throughout training. Comprehensive evaluations across synthetic and real-world datasets demonstrate state-of-the-art performance, including a 21.4% reduction in Chamfer distance over reflection-aware baselines and 2.32 dB PSNR improvement against neural rendering counterparts. Qualitative analyses reveal superior capability in recovering specular instruments, urban layouts with centimeter-scale infrastructure, and low-textured surfaces without local patch collapse. The method's generalizability is further validated through successful application to inverse rendering tasks, including material decomposition and view-consistent relighting.
Related papers
- SparseRecon: Neural Implicit Surface Reconstruction from Sparse Views with Feature and Depth Consistencies [48.99420012507374]
We propose SparseRecon, a novel neural implicit reconstruction method for sparse views with volume rendering-based feature consistency and uncertainty-guided depth constraint.<n>We show that our method outperforms the state-of-the-art methods, which can produce high-quality geometry with sparse-view input.
arXiv Detail & Related papers (2025-08-01T06:51:32Z) - Reflections Unlock: Geometry-Aware Reflection Disentanglement in 3D Gaussian Splatting for Photorealistic Scenes Rendering [51.223347330075576]
Ref-Unlock is a novel geometry-aware reflection modeling framework based on 3D Gaussian Splatting.<n>Our approach employs a dual-branch representation with high-order spherical harmonics to capture high-frequency reflective details.<n>Our method thus offers an efficient and generalizable solution for realistic rendering of reflective scenes.
arXiv Detail & Related papers (2025-07-08T15:45:08Z) - Geometric Prior-Guided Neural Implicit Surface Reconstruction in the Wild [13.109693095684921]
We introduce a novel approach that applies multiple geometric constraints to the implicit surface optimization process.<n>First, we utilize sparse 3D points from structure-from-motion (SfM) to refine the signed distance function estimation for the reconstructed surface.<n>We also employ robust normal priors derived from a normal predictor, enhanced by edge prior filtering and multi-view consistency constraints.
arXiv Detail & Related papers (2025-05-12T09:17:30Z) - AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
We present AniSDF, a novel approach that learns fused-granularity neural surfaces with physics-based encoding for high-fidelity 3D reconstruction.<n>Our method boosts the quality of SDF-based methods by a great scale in both geometry reconstruction and novel-view synthesis.
arXiv Detail & Related papers (2024-10-02T03:10:38Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
We leverage a differentiable radiance field eg NeRF to reconstruct detailed 3D surfaces in addition to producing novel view renderings.
Considering that different methods formulate and optimize the projection from SDF to radiance field with a globally constant Eikonal regularization, we improve with a ray-wise weighting factor.
Our proposed textitRaNeuS are extensively evaluated on both synthetic and real datasets.
arXiv Detail & Related papers (2024-06-14T07:54:25Z) - Low-Light Video Enhancement via Spatial-Temporal Consistent Decomposition [52.89441679581216]
Low-Light Video Enhancement (LLVE) seeks to restore dynamic or static scenes plagued by severe invisibility and noise.<n>We present an innovative video decomposition strategy that incorporates view-independent and view-dependent components.<n>Our framework consistently outperforms existing methods, establishing a new SOTA performance.
arXiv Detail & Related papers (2024-05-24T15:56:40Z) - PSDF: Prior-Driven Neural Implicit Surface Learning for Multi-view
Reconstruction [31.768161784030923]
The framework PSDF is proposed which resorts to external geometric priors from a pretrained MVS network and internal geometric priors inherent in the NISR model.
Experiments on the Tanks and Temples dataset show that PSDF achieves state-of-the-art performance on complex uncontrolled scenes.
arXiv Detail & Related papers (2024-01-23T13:30:43Z) - Improving Neural Indoor Surface Reconstruction with Mask-Guided Adaptive
Consistency Constraints [0.6749750044497732]
We propose a two-stage training process, decouple view-dependent and view-independent colors, and leverage two novel consistency constraints to enhance detail reconstruction performance without requiring extra priors.
Experiments on synthetic and real-world datasets show the capability of reducing the interference from prior estimation errors.
arXiv Detail & Related papers (2023-09-18T13:05:23Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
The reconstruction of indoor scenes from multi-view RGB images is challenging due to the coexistence of flat and texture-less regions.
Recent methods leverage neural radiance fields aided by predicted surface normal priors to recover the scene geometry.
This work aims to reconstruct high-fidelity surfaces with fine-grained details by addressing the above limitations.
arXiv Detail & Related papers (2023-09-14T12:05:29Z) - Critical Regularizations for Neural Surface Reconstruction in the Wild [26.460011241432092]
We present RegSDF, which shows that proper point cloud supervisions and geometry regularizations are sufficient to produce high-quality and robust reconstruction results.
RegSDF is able to reconstruct surfaces with fine details even for open scenes with complex topologies and unstructured camera trajectories.
arXiv Detail & Related papers (2022-06-07T08:11:22Z) - Implicit Subspace Prior Learning for Dual-Blind Face Restoration [66.67059961379923]
A novel implicit subspace prior learning (ISPL) framework is proposed as a generic solution to dual-blind face restoration.
Experimental results demonstrate significant perception-distortion improvement of ISPL against existing state-of-the-art methods.
arXiv Detail & Related papers (2020-10-12T08:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.