論文の概要: AIMatDesign: Knowledge-Augmented Reinforcement Learning for Inverse Materials Design under Data Scarcity
- arxiv url: http://arxiv.org/abs/2507.00024v1
- Date: Tue, 17 Jun 2025 08:17:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-07 02:47:44.390018
- Title: AIMatDesign: Knowledge-Augmented Reinforcement Learning for Inverse Materials Design under Data Scarcity
- Title(参考訳): AIMatDesign:データスカシティによる逆材料設計のための知識強化強化学習
- Authors: Yeyong Yu, Xilei Bian, Jie Xiong, Xing Wu, Quan Qian,
- Abstract要約: AIMatDesignは、逆設計手法のための強化学習フレームワークである。
信頼されたエクスペリエンスプールを構築し、モデルの収束を加速します。
発見効率、収束速度、成功率において、従来の機械学習および強化学習手法を大幅に上回っている。
- 参考スコア(独自算出の注目度): 5.660883851948541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing demand for novel materials, machine learning-driven inverse design methods face significant challenges in reconciling the high-dimensional materials composition space with limited experimental data. Existing approaches suffer from two major limitations: (I) machine learning models often lack reliability in high-dimensional spaces, leading to prediction biases during the design process; (II) these models fail to effectively incorporate domain expert knowledge, limiting their capacity to support knowledge-guided inverse design. To address these challenges, we introduce AIMatDesign, a reinforcement learning framework that addresses these limitations by augmenting experimental data using difference-based algorithms to build a trusted experience pool, accelerating model convergence. To enhance model reliability, an automated refinement strategy guided by large language models (LLMs) dynamically corrects prediction inconsistencies, reinforcing alignment between reward signals and state value functions. Additionally, a knowledge-based reward function leverages expert domain rules to improve stability and efficiency during training. Our experiments demonstrate that AIMatDesign significantly surpasses traditional machine learning and reinforcement learning methods in discovery efficiency, convergence speed, and success rates. Among the numerous candidates proposed by AIMatDesign, experimental synthesis of representative Zr-based alloys yielded a top-performing BMG with 1.7GPa yield strength and 10.2\% elongation, closely matching predictions. Moreover, the framework accurately captured the trend of yield strength variation with composition, demonstrating its reliability and potential for closed-loop materials discovery.
- Abstract(参考訳): 新たな材料への需要が高まる中、機械学習駆動の逆設計手法は、実験データに制限のある高次元材料合成空間の整合化において重大な課題に直面している。
既存のアプローチには2つの大きな制限がある: (I) 機械学習モデルは高次元空間における信頼性を欠くことが多く、設計プロセス中に予測バイアスをもたらす。
これらの課題に対処するため、AIMatDesignという強化学習フレームワークを導入し、差分ベースのアルゴリズムを用いて実験データを増強し、信頼されたエクスペリエンスプールを構築し、モデル収束を加速する。
モデルの信頼性を高めるため、大規模言語モデル(LLM)が導く自動改善戦略は、予測の不整合を動的に補正し、報酬信号と状態値関数のアライメントを強化する。
さらに、知識に基づく報酬関数は、専門家のドメインルールを活用して、トレーニング中の安定性と効率を改善する。
実験の結果,AIMatDesignは発見効率,収束速度,成功率において,従来の機械学習および強化学習手法を大幅に上回っていることがわかった。
AIMatDesignによって提案された多くの候補のうち、Zr基合金を合成した実験では、収率1.7GPa、伸長10.2\%の最高性能のBMGが得られた。
さらに, 組成による降伏強度変化の傾向を正確に把握し, 閉ループ材料発見の信頼性と可能性を示した。
関連論文リスト
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
インフルエンサーベースのアンラーニングは、個別のトレーニングサンプルがモデルパラメータに与える影響を再トレーニングせずに推定する顕著なアプローチとして現れてきた。
本稿では,暗記(増分学習)と忘れ(未学習)の理論的関連性を確立する。
本稿では、インフルエンス近似アンラーニングアルゴリズムを導入し、インクリメンタルな視点から効率的なマシンアンラーニングを行う。
論文 参考訳(メタデータ) (2025-07-31T05:34:27Z) - Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing [125.75923987618977]
認知表現動的プログラミングに基づく知識追跡(CRDP-KT)モデルを提案する。
質問の難易度とそれらの間の性能間隔に基づいて認知表現を最適化する動的プログラミングアルゴリズムである。
これは、その後のモデルトレーニングのためにより正確で体系的な入力機能を提供し、それによって認知状態のシミュレーションにおける歪みを最小限にする。
論文 参考訳(メタデータ) (2025-06-03T14:44:48Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - SDPERL: A Framework for Software Defect Prediction Using Ensemble Feature Extraction and Reinforcement Learning [0.0]
本稿では,ソフトウェア欠陥予測のための革新的なフレームワークを提案する。
アンサンブル特徴抽出と強化学習(RL)に基づく特徴選択を組み合わせる。
この作業は、ファイルレベルの粒度でこの問題に対処する最近の取り組みの1つだ、と我々は主張する。
論文 参考訳(メタデータ) (2024-12-10T21:16:05Z) - ExAL: An Exploration Enhanced Adversarial Learning Algorithm [0.0]
探索強化適応学習アルゴリズム(ExAL)を提案する。
ExALは探索駆動機構を統合し、モデル決定境界への影響を最大化する摂動を発見する。
MNISTの手書きディジットとBlended Malwareデータセット上でのExALの性能を評価する。
論文 参考訳(メタデータ) (2024-11-24T15:37:29Z) - Joint Hypergraph Rewiring and Memory-Augmented Forecasting Techniques in Digital Twin Technology [2.368662284133926]
Digital Twin技術は、物理的オブジェクト、プロセス、システムの仮想レプリカを作成し、それらの特性、データ、振る舞いを複製する。
Digital Twin技術は、大規模複雑なセンサーネットワークにおけるグラフ予測技術を活用し、多様なシナリオの正確な予測とシミュレーションを可能にしている。
本稿では,新しいパターンへの高速適応と過去の知識のメモリベース検索を取り入れ,ハイパーグラフ表現学習のバックボーンを強化するハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-08-22T14:08:45Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
本研究では,拡張LFTSformerと呼ばれる長期金融時系列の予測モデルを提案する。
このモデルは、いくつかの重要なイノベーションを通じて、自分自身を区別する。
さまざまなベンチマークストックマーケットデータセットに関するシステマティックな実験は、強化LFTSformerが従来の機械学習モデルより優れていることを示している。
論文 参考訳(メタデータ) (2023-10-03T08:37:21Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications [0.0]
予測の不確実性は、モデル予測を補完し、下流タスクの機能を改善します。
Axolotlフレームワークを用いてモンテカルロ・ドロップアウト(MCDO)モデルを構築することでこの問題に対処する。
我々は,(1)CIFAR10データセットを用いた多クラス分類タスク,(2)より複雑な人体セグメンテーションタスクについて実験を行った。
論文 参考訳(メタデータ) (2021-11-11T22:24:15Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。