論文の概要: ExAL: An Exploration Enhanced Adversarial Learning Algorithm
- arxiv url: http://arxiv.org/abs/2411.15878v1
- Date: Sun, 24 Nov 2024 15:37:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:40.708516
- Title: ExAL: An Exploration Enhanced Adversarial Learning Algorithm
- Title(参考訳): ExAL: 対人学習アルゴリズムの探索
- Authors: A Vinil, Aneesh Sreevallabh Chivukula, Pranav Chintareddy,
- Abstract要約: 探索強化適応学習アルゴリズム(ExAL)を提案する。
ExALは探索駆動機構を統合し、モデル決定境界への影響を最大化する摂動を発見する。
MNISTの手書きディジットとBlended Malwareデータセット上でのExALの性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Adversarial learning is critical for enhancing model robustness, aiming to defend against adversarial attacks that jeopardize machine learning systems. Traditional methods often lack efficient mechanisms to explore diverse adversarial perturbations, leading to limited model resilience. Inspired by game-theoretic principles, where adversarial dynamics are analyzed through frameworks like Nash equilibrium, exploration mechanisms in such setups allow for the discovery of diverse strategies, enhancing system robustness. However, existing adversarial learning methods often fail to incorporate structured exploration effectively, reducing their ability to improve model defense comprehensively. To address these challenges, we propose a novel Exploration-enhanced Adversarial Learning Algorithm (ExAL), leveraging the Exponentially Weighted Momentum Particle Swarm Optimizer (EMPSO) to generate optimized adversarial perturbations. ExAL integrates exploration-driven mechanisms to discover perturbations that maximize impact on the model's decision boundary while preserving structural coherence in the data. We evaluate the performance of ExAL on the MNIST Handwritten Digits and Blended Malware datasets. Experimental results demonstrate that ExAL significantly enhances model resilience to adversarial attacks by improving robustness through adversarial learning.
- Abstract(参考訳): 敵対的学習は、機械学習システムを危険にさらす敵対的攻撃から守ることを目的として、モデルの堅牢性を高めるために重要である。
従来の手法では、様々な敵の摂動を探索する効率的なメカニズムが欠如しており、モデルレジリエンスが制限される。
ゲーム理論の原理に触発され、ナッシュ均衡のようなフレームワークを通じて敵の力学が分析され、そのような設定における探索機構は多様な戦略の発見を可能にし、システムの堅牢性を高める。
しかし、既存の敵対的学習手法は、しばしば構造的探索を効果的に組み込むことができず、モデル防御を包括的に改善する能力は低下する。
これらの課題に対処するために,指数重み付き粒子群最適化器 (EMPSO) を利用した探索強化逆数学習アルゴリズム (ExAL) を提案する。
ExALは探索駆動機構を統合して、データの構造的コヒーレンスを維持しながら、モデルの決定境界への影響を最大化する摂動を発見する。
MNISTの手書きディジットとBlended Malwareデータセット上でのExALの性能を評価する。
実験結果から,ExALは対向学習による堅牢性の向上により,対向攻撃に対するモデルレジリエンスを著しく向上することが示された。
関連論文リスト
- Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks [0.0]
敵対的攻撃は、画像分類におけるディープラーニングモデルの堅牢性に重大な脅威をもたらす。
本稿では,ニューラルネットワークのレジリエンスを高めるために,これらの攻撃に対する防御機構を探索し,洗練する。
論文 参考訳(メタデータ) (2024-08-20T02:00:02Z) - Learning Long-Horizon Predictions for Quadrotor Dynamics [48.08477275522024]
四元数に対する長軸予測力学を効率的に学習するための鍵となる設計選択について検討する。
逐次モデリング手法は,他のタイプの手法と比較して,合成誤差を最小限に抑える上での優位性を示す。
本稿では,モジュール性の向上を図りながら,学習プロセスをさらに単純化する,疎結合な動的学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-17T19:06:47Z) - MISLEAD: Manipulating Importance of Selected features for Learning Epsilon in Evasion Attack Deception [0.35998666903987897]
回避攻撃は入力データに正確な摂動を導入してモデルを操作し、誤った予測を引き起こす。
私たちのアプローチは、モデル脆弱性を理解するためのSHAPベースの分析から始まり、ターゲットの回避戦略の考案に不可欠です。
バイナリ探索アルゴリズムを用いた最適エプシロン法は,回避に要する最小エプシロンを効率的に決定する。
論文 参考訳(メタデータ) (2024-04-24T05:22:38Z) - Exploring the Adversarial Frontier: Quantifying Robustness via Adversarial Hypervolume [17.198794644483026]
本稿では,様々な摂動強度に対して総合的に深層学習モデルの頑健性を評価するための,対向超体積と呼ばれる新しい計量法を提案する。
我々は,様々な摂動強度の対向的堅牢性を均一に向上する新しいトレーニングアルゴリズムを採用する。
本研究はロバスト性の新しい尺度に寄与し、敵の脅威に対するベンチマーク評価と、現在および将来の防御モデルのレジリエンスの基準を確立する。
論文 参考訳(メタデータ) (2024-03-08T07:03:18Z) - FACADE: A Framework for Adversarial Circuit Anomaly Detection and
Evaluation [9.025997629442896]
FACADEは、ディープニューラルネットワークにおける教師なしの機械的異常検出のために設計されている。
我々のアプローチは、モデルの堅牢性を改善し、スケーラブルなモデル監視を強化し、現実のデプロイメント環境で有望なアプリケーションを実証することを目指している。
論文 参考訳(メタデータ) (2023-07-20T04:00:37Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
確率的発散の選択における変動が、より高性能なILOアルゴリズムをもたらす可能性について検討する。
本稿では,提案する$f$-divergence最小化フレームワークの課題を軽減するために,逆模倣学習のための再パラメータ化手法を提案する。
経験的に、我々の設計選択は、ベースラインアプローチより優れ、低次元連続制御タスクにおける専門家のパフォーマンスとより密に適合するIOOアルゴリズムを許容することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:04:09Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
敵対的訓練は、ディープラーニングモデルに対する敵対的攻撃に対する最も効果的な防御の1つである。
本研究では,超球埋め込み機構をATプロシージャに組み込むことを提唱する。
我々は,CIFAR-10 と ImageNet データセットに対する幅広い敵対攻撃の下で本手法を検証した。
論文 参考訳(メタデータ) (2020-02-20T08:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。