MR-CLIP: Efficient Metadata-Guided Learning of MRI Contrast Representations
- URL: http://arxiv.org/abs/2507.00043v1
- Date: Mon, 23 Jun 2025 13:27:31 GMT
- Title: MR-CLIP: Efficient Metadata-Guided Learning of MRI Contrast Representations
- Authors: Mehmet Yigit Avci, Pedro Borges, Paul Wright, Mehmet Yigitsoy, Sebastien Ourselin, Jorge Cardoso,
- Abstract summary: We propose MR-CLIP, a multimodal contrastive learning framework that aligns MR images with their DICOM metadata to learn contrast-aware representations.<n>We demonstrate its effectiveness in cross-modal retrieval and contrast classification, highlighting its scalability and potential for further clinical applications.
- Score: 0.8430273876996414
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate interpretation of Magnetic Resonance Imaging scans in clinical systems is based on a precise understanding of image contrast. This contrast is primarily governed by acquisition parameters, such as echo time and repetition time, which are stored in the DICOM metadata. To simplify contrast identification, broad labels such as T1-weighted or T2-weighted are commonly used, but these offer only a coarse approximation of the underlying acquisition settings. In many real-world datasets, such labels are entirely missing, leaving raw acquisition parameters as the only indicators of contrast. Adding to this challenge, the available metadata is often incomplete, noisy, or inconsistent. The lack of reliable and standardized metadata complicates tasks such as image interpretation, retrieval, and integration into clinical workflows. Furthermore, robust contrast-aware representations are essential to enable more advanced clinical applications, such as achieving modality-invariant representations and data harmonization. To address these challenges, we propose MR-CLIP, a multimodal contrastive learning framework that aligns MR images with their DICOM metadata to learn contrast-aware representations, without relying on manual labels. Trained on a diverse clinical dataset that spans various scanners and protocols, MR-CLIP captures contrast variations across acquisitions and within scans, enabling anatomy-invariant representations. We demonstrate its effectiveness in cross-modal retrieval and contrast classification, highlighting its scalability and potential for further clinical applications. The code and weights are publicly available at https://github.com/myigitavci/MR-CLIP.
Related papers
- MADPOT: Medical Anomaly Detection with CLIP Adaptation and Partial Optimal Transport [14.023527193608142]
We propose a novel approach combining visual adapters and prompt learning with Partial Optimal Transport (POT) and contrastive learning (CL) to improve CLIP's adaptability to medical images.<n>Our method achieves state-of-the-art results in few-shot, zero-shot, and cross-dataset scenarios without synthetic data or memory banks.
arXiv Detail & Related papers (2025-07-09T10:45:52Z) - MadCLIP: Few-shot Medical Anomaly Detection with CLIP [14.023527193608142]
An innovative few-shot anomaly detection approach is presented, leveraging the pre-trained CLIP model for medical data.<n>A dual-branch design is proposed to separately capture normal and abnormal features through learnable adapters.<n>To improve semantic alignment, learnable text prompts are employed to link visual features.
arXiv Detail & Related papers (2025-06-30T12:56:17Z) - pyMEAL: A Multi-Encoder Augmentation-Aware Learning for Robust and Generalizable Medical Image Translation [0.0]
3D medical imaging still suffers from data scarcity and inconsistencies due to acquisition protocols, scanner differences, and patient motion.<n>Traditional augmentation uses a single pipeline for all transformations, disregarding the unique traits of each augmentation.<n>We propose a Multi-encoder Augmentation-Aware Learning framework that leverages four distinct augmentation variants processed through dedicated encoders.
arXiv Detail & Related papers (2025-05-30T10:01:23Z) - RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining [48.21287619304126]
We propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities.<n>We construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans.<n>We develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks.
arXiv Detail & Related papers (2025-03-06T17:43:03Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.<n>We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - CABLD: Contrast-Agnostic Brain Landmark Detection with Consistency-Based Regularization [2.423045468361048]
We introduce CABLD, a novel self-supervised deep learning framework for 3D brain landmark detection in unlabeled scans.<n>We demonstrate the proposed method with the intricate task of MRI-based 3D brain landmark detection.<n>Our framework provides a robust and accurate solution for anatomical landmark detection, reducing the need for extensively annotated datasets.
arXiv Detail & Related papers (2024-11-26T19:56:29Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Explainable unsupervised multi-modal image registration using deep
networks [2.197364252030876]
MRI image registration aims to geometrically 'pair' diagnoses from different modalities, time points and slices.
In this work, we show that our DL model becomes fully explainable, setting the framework to generalise our approach on further medical imaging data.
arXiv Detail & Related papers (2023-08-03T19:13:48Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - One Model to Synthesize Them All: Multi-contrast Multi-scale Transformer
for Missing Data Imputation [3.9207133968068684]
We formulate missing data imputation as a sequence-to-sequence learning problem.
We propose a multi-contrast multi-scale Transformer (MMT) which can take any subset of input contrasts and synthesize those that are missing.
MMT is inherently interpretable as it allows us to understand the importance of each input contrast in different regions.
arXiv Detail & Related papers (2022-04-28T18:49:27Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.