A Joint Topology-Data Fusion Graph Network for Robust Traffic Speed Prediction with Data Anomalism
- URL: http://arxiv.org/abs/2507.00085v1
- Date: Mon, 30 Jun 2025 06:33:47 GMT
- Title: A Joint Topology-Data Fusion Graph Network for Robust Traffic Speed Prediction with Data Anomalism
- Authors: Ruiyuan Jiang, Dongyao Jia, Eng Gee Lim, Pengfei Fan, Yuli Zhang, Shangbo Wang,
- Abstract summary: We propose Graph Fusion Enhanced Network (GFEN), an innovative framework for network-level traffic speed prediction.<n>GFEN extracts spatial temporal correlations from both data distribution and network topology using trainable methods.<n>Experiments demonstrate that GFEN surpasses state-of-the-art methods by approximately 6.3% in prediction accuracy and convergence rates nearly twice as fast as recent hybrid models.
- Score: 12.43932698231744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate traffic prediction is essential for Intelligent Transportation Systems (ITS), yet current methods struggle with the inherent complexity and non-linearity of traffic dynamics, making it difficult to integrate spatial and temporal characteristics. Furthermore, existing approaches use static techniques to address non-stationary and anomalous historical data, which limits adaptability and undermines data smoothing. To overcome these challenges, we propose the Graph Fusion Enhanced Network (GFEN), an innovative framework for network-level traffic speed prediction. GFEN introduces a novel topological spatiotemporal graph fusion technique that meticulously extracts and merges spatial and temporal correlations from both data distribution and network topology using trainable methods, enabling the modeling of multi-scale spatiotemporal features. Additionally, GFEN employs a hybrid methodology combining a k-th order difference-based mathematical framework with an attention-based deep learning structure to adaptively smooth historical observations and dynamically mitigate data anomalies and non-stationarity. Extensive experiments demonstrate that GFEN surpasses state-of-the-art methods by approximately 6.3% in prediction accuracy and exhibits convergence rates nearly twice as fast as recent hybrid models, confirming its superior performance and potential to significantly enhance traffic prediction system efficiency.
Related papers
- SFADNet: Spatio-temporal Fused Graph based on Attention Decoupling Network for Traffic Prediction [4.868638426254428]
This paper proposes an innovative traffic flow prediction network, SFADNet, which categorizes traffic flow into multiple traffic patterns based on spatial feature matrices.<n>For each pattern, we construct an independent adaptive-temporal fusion graph based on a cross-attention mechanism, employing residual graph convolution modules and time series modules.<n>Extensive experimental results demonstrate that SFADNet outperforms current state-of-the-art baseline across large four-scale datasets.
arXiv Detail & Related papers (2025-01-07T09:09:50Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Context-Conditioned Spatio-Temporal Predictive Learning for Reliable V2V Channel Prediction [25.688521281119037]
Vehicle-to-Vehicle (V2V) channel state information (CSI) prediction is challenging and crucial for optimizing downstream tasks.
Traditional prediction approaches focus on four-dimensional (4D) CSI, which includes predictions over time, bandwidth, and antenna (TX and RX) space.
We propose a novel context-conditionedtemporal predictive learning method to capture dependencies within 4D CSI data.
arXiv Detail & Related papers (2024-09-16T04:15:36Z) - Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting [13.309018047313801]
Traffic forecasting has emerged as a crucial research area in the development of smart cities.
Recent advancements in network modeling for most-temporal correlations are starting to see diminishing returns in performance.
To tackle these challenges, we introduce the Spatio-Temporal Graph Transformer (STGormer)
We design two straightforward yet effective spatial encoding methods based on the structure and integrate time position into the vanilla transformer to capture-temporal traffic patterns.
arXiv Detail & Related papers (2024-08-20T13:18:21Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - A novel hybrid time-varying graph neural network for traffic flow forecasting [3.6623539239888556]
Real-time and precise traffic flow prediction is vital for the efficiency of intelligent transportation systems.
Traditional graph neural networks (GNNs) are used to describe spatial correlations among traffic nodes in urban road networks.
We have proposed a novel hybrid time-varying graph neural network (HTVGNN) for traffic flow prediction.
arXiv Detail & Related papers (2024-01-17T07:21:36Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
We present a novel deep-learning method called Federated Learning and Asynchronous Graph Convolutional Networks (FLAGCN)
Our framework incorporates the principles of asynchronous graph convolutional networks with federated learning to enhance accuracy and efficiency of real-time traffic flow prediction.
arXiv Detail & Related papers (2024-01-05T09:36:42Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.