Observable and Unobservable in Quantum Mechanics
- URL: http://arxiv.org/abs/2507.00098v1
- Date: Mon, 30 Jun 2025 12:23:50 GMT
- Title: Observable and Unobservable in Quantum Mechanics
- Authors: Marcello Poletti,
- Abstract summary: It introduces the notion of textitonto-epistemic ignorance: situations in which the truth of a proposition is not deducible due to an objective breakdown in the phenomenal chain.<n>It is shown that, under such conditions, the probabilities accessible to a real observer are necessarily conditioned by decidability and obey a non-commutative algebra.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work explores the connection between logical independence and the algebraic structure of quantum mechanics. Building on results by Brukner et al., it introduces the notion of \textit{onto-epistemic ignorance}: situations in which the truth of a proposition is not deducible due to an objective breakdown in the phenomenal chain that transmits information from a system A to a system B, rather than to any subjective lack of knowledge. It is shown that, under such conditions, the probabilities accessible to a real observer are necessarily conditioned by decidability and obey a non-commutative algebra, formally equivalent to the fundamental postulates of quantum mechanics.
Related papers
- The Measurement Problem Is a Feature, Not a Bug--Schematising the
Observer and the Concept of an Open System on an Informational, or
(Neo-)Bohrian, Approach [0.0]
I argue that quantum mechanics represents what Bohr called a natural generalisation of the ordinary causal description''
I show how the quantum generalisation of the concept of an open system may be used to assuage Einstein's complaint.
arXiv Detail & Related papers (2023-08-31T00:19:04Z) - Step-by-step derivation of the algebraic structure of quantum mechanics
(or from nondisturbing to quantum correlations by connecting incompatible
observables) [0.0]
This paper provides a step-by-step derivation of the quantum formalism.
It helps us to understand why this formalism is as it is.
arXiv Detail & Related papers (2023-03-08T19:27:24Z) - Witnessing the non-objectivity of an unknown quantum dynamics [0.6745502291821955]
We show that objectivity implies a Bell-like inequality.
Observers probing distinct parts of the environment can agree upon their measurement outcome of a given observable.
But such outcome can be totally uncorrelated from the property of the quantum system that fixed observable should be probing.
arXiv Detail & Related papers (2022-11-28T18:44:42Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Qubits are not observers -- a no-go theorem [0.0]
The relational approach to quantum states asserts that the physical description of quantum systems is always relative to something or someone.
We show, in the form of a no-go theorem, that in RQM the physical description of a system relative to an observer cannot represent knowledge about the observer.
arXiv Detail & Related papers (2021-07-07T22:48:16Z) - Experimental study of quantum uncertainty from lack of information [3.901856932788151]
The uncertainty in the classical domain comes from the lack of information about the exact state of the system.
In this paper we investigate the issue experimentally by implementing the corresponding two-dimensional and three-dimensional guessing games.
Our results confirm that within the guessing-game framework, the quantum uncertainty to a large extent relies on the fact that quantum information determining the key properties of the game is stored in the degrees of freedom that remain inaccessible to the guessing party.
arXiv Detail & Related papers (2021-05-19T09:15:27Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Self-adjointness in Quantum Mechanics: a pedagogical path [77.34726150561087]
This paper aims to make quantum observables emerge as necessarily self-adjoint, and not merely hermitian operators.
Next to the central core of our line of reasoning, the necessity of a non-trivial declaration of a domain to associate with the formal action of an observable.
arXiv Detail & Related papers (2020-12-28T21:19:33Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.