論文の概要: SelvaBox: A high-resolution dataset for tropical tree crown detection
- arxiv url: http://arxiv.org/abs/2507.00170v1
- Date: Mon, 30 Jun 2025 18:23:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:58.545366
- Title: SelvaBox: A high-resolution dataset for tropical tree crown detection
- Title(参考訳): SelvaBox:熱帯樹冠検出のための高解像度データセット
- Authors: Hugo Baudchon, Arthur Ouaknine, Martin Weiss, Mélisande Teng, Thomas R. Walla, Antoine Caron-Guay, Christopher Pal, Etienne Laliberté,
- Abstract要約: SelvaBoxは、高解像度ドローン画像における熱帯樹冠検出のための最大のオープンアクセスデータセットである。
3つの国にまたがり、83,000以上の王冠が手作業で登録されている。
- 参考スコア(独自算出の注目度): 5.686099826428018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting individual tree crowns in tropical forests is essential to study these complex and crucial ecosystems impacted by human interventions and climate change. However, tropical crowns vary widely in size, structure, and pattern and are largely overlapping and intertwined, requiring advanced remote sensing methods applied to high-resolution imagery. Despite growing interest in tropical tree crown detection, annotated datasets remain scarce, hindering robust model development. We introduce SelvaBox, the largest open-access dataset for tropical tree crown detection in high-resolution drone imagery. It spans three countries and contains more than 83,000 manually labeled crowns - an order of magnitude larger than all previous tropical forest datasets combined. Extensive benchmarks on SelvaBox reveal two key findings: (1) higher-resolution inputs consistently boost detection accuracy; and (2) models trained exclusively on SelvaBox achieve competitive zero-shot detection performance on unseen tropical tree crown datasets, matching or exceeding competing methods. Furthermore, jointly training on SelvaBox and three other datasets at resolutions from 3 to 10 cm per pixel within a unified multi-resolution pipeline yields a detector ranking first or second across all evaluated datasets. Our dataset, code, and pre-trained weights are made public.
- Abstract(参考訳): 熱帯林における個々の樹冠の検出は、人間の介入や気候変動の影響を受け、複雑で重要な生態系を研究するために不可欠である。
しかし、熱帯の樹冠の大きさ、構造、パターンは様々であり、主に重なり合い、絡み合っており、高解像度の画像に高度なリモートセンシング方法が必要である。
熱帯樹冠検出への関心が高まっているが、注釈付きデータセットは乏しく、堅牢なモデル開発を妨げる。
SelvaBoxは、高解像度ドローン画像における熱帯樹冠検出のための最大のオープンアクセスデータセットである。
3つの国にまたがり、83,000個以上の冠が手作業でラベル付けされており、これは以前の熱帯林のデータセットの合計よりも桁違いに大きい。
1)高解像度入力は検出精度を継続的に向上し、(2)SelvaBoxで専用にトレーニングされたモデルは、目に見えない熱帯の樹冠のデータセット上で、競合するメソッドをマッチングまたは超越して、競合するゼロショット検出性能を達成する。
さらに、SelvaBoxと他の3つのデータセットを、統一されたマルチレゾリューションパイプライン内で1ピクセルあたり3~10cmの解像度で共同でトレーニングすることで、評価されたすべてのデータセットで第1ないし第2位の検出器が生成される。
データセット、コード、トレーニング済みの重み付けは公開されています。
関連論文リスト
- Bringing SAM to new heights: Leveraging elevation data for tree crown segmentation from drone imagery [68.69685477556682]
現在のモニタリング手法には、大規模なコスト、時間、労力を必要とする地上計測が含まれる。
ドローンのリモートセンシングとコンピュータビジョンは、広範囲の航空画像から個々の木をマッピングする大きな可能性を秘めている。
高解像度ドローン画像におけるツリークラウンインスタンスの自動セグメンテーションのためのセグメンテーションモデル(SAM)を用いた手法の比較を行った。
また,デジタルサーフェスモデル(DSM)情報を用いたモデルへの標高データの統合についても検討した。
論文 参考訳(メタデータ) (2025-06-05T12:43:11Z) - Data Augmentation and Resolution Enhancement using GANs and Diffusion Models for Tree Segmentation [49.13393683126712]
都市森林は、環境の質を高め、都市における生物多様性を支援する上で重要な役割を担っている。
複雑な地形と異なる衛星センサーやUAV飛行高度による画像解像度の変化により、正確に木を検知することは困難である。
低解像度空中画像の品質を高めるため,GANと拡散モデルとドメイン適応を統合した新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2025-05-21T03:57:10Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
我々は,大規模SARオブジェクト検出のための新しいベンチマークデータセットとオープンソース手法を構築した。
私たちのデータセットであるSARDet-100Kは、10の既存のSAR検出データセットの厳格な調査、収集、標準化の結果です。
私たちの知る限りでは、SARDet-100KはCOCOレベルの大規模マルチクラスSARオブジェクト検出データセットとしては初めてのものです。
論文 参考訳(メタデータ) (2024-03-11T09:20:40Z) - MultiEarth 2023 Deforestation Challenge -- Team FOREVER [0.2020917258669917]
直接アクセスすることなく広範囲を解析できるため,衛星画像の森林破壊を正確に推定することが重要である。
本稿では、最新の深層ニューラルネットワークモデルを用いて、アマゾン熱帯雨林地域の森林破壊状況を予測するための多視点学習戦略を提案する。
論文 参考訳(メタデータ) (2023-06-20T09:10:06Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
本稿では,複数の非国家の管轄区域で同時に作成される最初の高分解能天蓋の高さマップについて述べる。
地図は、2017年から2020年にかけて、マクサー画像に基づいて訓練された自己教師モデルから特徴を抽出することによって生成される。
また、GEDI観測に基づいて訓練された畳み込みネットワークを用いた後処理のステップも導入する。
論文 参考訳(メタデータ) (2023-04-14T15:52:57Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - Multi-Layer Modeling of Dense Vegetation from Aerial LiDAR Scans [4.129847064263057]
私たちはWildForest3Dをリリースしました。これは29の研究プロットと47000m2にまたがる2000以上の個々の木で構成されています。
本稿では,3次元ポイントワイドラベルと高分解能占有メッシュを同時に同時に予測する3次元ディープネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-04-25T12:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。