Gym4ReaL: A Suite for Benchmarking Real-World Reinforcement Learning
- URL: http://arxiv.org/abs/2507.00257v1
- Date: Mon, 30 Jun 2025 20:47:50 GMT
- Title: Gym4ReaL: A Suite for Benchmarking Real-World Reinforcement Learning
- Authors: Davide Salaorni, Vincenzo De Paola, Samuele Delpero, Giovanni Dispoto, Paolo Bonetti, Alessio Russo, Giuseppe Calcagno, Francesco Trovò, Matteo Papini, Alberto Maria Metelli, Marco Mussi, Marcello Restelli,
- Abstract summary: We introduce textttGym4ReaL, a suite of realistic environments designed to support the development and evaluation of RL algorithms.<n>Our experimental results show that, in these settings, standard RL algorithms confirm their competitiveness against rule-based benchmarks.
- Score: 46.03129508525389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, \emph{Reinforcement Learning} (RL) has made remarkable progress, achieving superhuman performance in a wide range of simulated environments. As research moves toward deploying RL in real-world applications, the field faces a new set of challenges inherent to real-world settings, such as large state-action spaces, non-stationarity, and partial observability. Despite their importance, these challenges are often underexplored in current benchmarks, which tend to focus on idealized, fully observable, and stationary environments, often neglecting to incorporate real-world complexities explicitly. In this paper, we introduce \texttt{Gym4ReaL}, a comprehensive suite of realistic environments designed to support the development and evaluation of RL algorithms that can operate in real-world scenarios. The suite includes a diverse set of tasks that expose algorithms to a variety of practical challenges. Our experimental results show that, in these settings, standard RL algorithms confirm their competitiveness against rule-based benchmarks, motivating the development of new methods to fully exploit the potential of RL to tackle the complexities of real-world tasks.
Related papers
- Crossing the Reward Bridge: Expanding RL with Verifiable Rewards Across Diverse Domains [92.36624674516553]
Reinforcement learning with verifiable rewards (RLVR) has demonstrated significant success in enhancing mathematical reasoning and coding performance of large language models (LLMs)<n>We investigate the effectiveness and scalability of RLVR across diverse real-world domains including medicine, chemistry, psychology, economics, and education.<n>We utilize a generative scoring technique that yields soft, model-based reward signals to overcome limitations posed by binary verifications.
arXiv Detail & Related papers (2025-03-31T08:22:49Z) - Localized Observation Abstraction Using Piecewise Linear Spatial Decay for Reinforcement Learning in Combat Simulations [0.0]
This paper presents a method of localized observation abstraction using piecewise linear spatial decay.
This technique simplifies the state space, reducing computational demands while still preserving essential information.
Our analysis reveals that this localized observation approach consistently outperforms the more traditional global observation approach across increasing scenario complexity levels.
arXiv Detail & Related papers (2024-08-23T18:26:10Z) - Towards Realistic Data Generation for Real-World Super-Resolution [58.99206459754721]
RealDGen is an unsupervised learning data generation framework designed for real-world super-resolution.<n>We develop content and degradation extraction strategies, which are integrated into a novel content-degradation decoupled diffusion model.<n>Experiments demonstrate that RealDGen excels in generating large-scale, high-quality paired data that mirrors real-world degradations.
arXiv Detail & Related papers (2024-06-11T13:34:57Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Learning Curricula in Open-Ended Worlds [17.138779075998084]
This thesis develops a class of methods called Unsupervised Environment Design (UED)
Given an environment design space, UED automatically generates an infinite sequence or curriculum of training environments.
The findings in this thesis show that UED autocurricula can produce RL agents exhibiting significantly improved robustness.
arXiv Detail & Related papers (2023-12-03T16:44:00Z) - Staged Reinforcement Learning for Complex Tasks through Decomposed
Environments [4.883558259729863]
We discuss two methods that approximate RL problems to real problems.
In the context of traffic junction simulations, we demonstrate that, if we can decompose a complex task into multiple sub-tasks, solving these tasks first can be advantageous.
From a multi-agent perspective, we introduce a training structuring mechanism that exploits the use of experience learned under the popular paradigm called Centralised Training Decentralised Execution (CTDE)
arXiv Detail & Related papers (2023-11-05T19:43:23Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner.
We show how cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks.
arXiv Detail & Related papers (2022-02-09T15:01:59Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
Real-world embodied learning, such as that performed by humans and animals, is situated in a continual, non-episodic world.
Common benchmark tasks in RL are episodic, with the environment resetting between trials to provide the agent with multiple attempts.
This discrepancy presents a major challenge when attempting to take RL algorithms developed for episodic simulated environments and run them on real-world platforms.
arXiv Detail & Related papers (2021-12-17T16:28:06Z) - Scenic4RL: Programmatic Modeling and Generation of Reinforcement
Learning Environments [89.04823188871906]
Generation of diverse realistic scenarios is challenging for real-time strategy (RTS) environments.
Most of the existing simulators rely on randomly generating the environments.
We introduce the benefits of adopting an existing formal scenario specification language, SCENIC, to assist researchers.
arXiv Detail & Related papers (2021-06-18T21:49:46Z) - An empirical investigation of the challenges of real-world reinforcement
learning [29.841552004806932]
We identify and formalize a series of independent challenges that embody the difficulties that must be addressed for RL to be commonly deployed in real-world systems.
We believe that an approach that addresses our set of proposed challenges would be readily deployable in a large number of real world problems.
arXiv Detail & Related papers (2020-03-24T11:05:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.