Driver Profiling and Bayesian Workload Estimation Using Naturalistic
Peripheral Detection Study Data
- URL: http://arxiv.org/abs/2303.14720v2
- Date: Fri, 8 Sep 2023 12:20:23 GMT
- Title: Driver Profiling and Bayesian Workload Estimation Using Naturalistic
Peripheral Detection Study Data
- Authors: Nermin Caber, Bashar I. Ahmad, Jiaming Liang, Simon Godsill, Alexandra
Bremers, Philip Thomas, David Oxtoby and Lee Skrypchuk
- Abstract summary: We tackle the problem of workload estimation from driving performance data.
Key environmental factors that induce a high mental workload are identified via video analysis.
A supervised learning framework is introduced to profile drivers based on the average workload they experience.
A Bayesian filtering approach is then proposed for sequentially estimating, in (near) real-time, the driver's instantaneous workload.
- Score: 40.43737902900321
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Monitoring drivers' mental workload facilitates initiating and maintaining
safe interactions with in-vehicle information systems, and thus delivers
adaptive human machine interaction with reduced impact on the primary task of
driving. In this paper, we tackle the problem of workload estimation from
driving performance data. First, we present a novel on-road study for
collecting subjective workload data via a modified peripheral detection task in
naturalistic settings. Key environmental factors that induce a high mental
workload are identified via video analysis, e.g. junctions and behaviour of
vehicle in front. Second, a supervised learning framework using
state-of-the-art time series classifiers (e.g. convolutional neural network and
transform techniques) is introduced to profile drivers based on the average
workload they experience during a journey. A Bayesian filtering approach is
then proposed for sequentially estimating, in (near) real-time, the driver's
instantaneous workload. This computationally efficient and flexible method can
be easily personalised to a driver (e.g. incorporate their inferred average
workload profile), adapted to driving/environmental contexts (e.g. road type)
and extended with data streams from new sources. The efficacy of the presented
profiling and instantaneous workload estimation approaches are demonstrated
using the on-road study data, showing $F_{1}$ scores of up to 92% and 81%,
respectively.
Related papers
- Enhancing Lane Segment Perception and Topology Reasoning with Crowdsourcing Trajectory Priors [12.333249510969289]
In this paper, we investigate prior augmentation from a novel perspective of trajectory priors.
We design a confidence-based fusion module that takes alignment into account during the fusion process.
The results indicate that our method's performance significantly outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2024-11-26T07:05:05Z) - Cross-Camera Distracted Driver Classification through Feature Disentanglement and Contrastive Learning [13.613407983544427]
We introduce a robust model designed to withstand changes in camera position within the vehicle.
Our Driver Behavior Monitoring Network (DBMNet) relies on a lightweight backbone and integrates a disentanglement module.
Experiments conducted on the daytime and nighttime subsets of the 100-Driver dataset validate the effectiveness of our approach.
arXiv Detail & Related papers (2024-11-20T10:27:12Z) - Perception Without Vision for Trajectory Prediction: Ego Vehicle Dynamics as Scene Representation for Efficient Active Learning in Autonomous Driving [0.0]
We propose methods for clustering trajectory-states and sampling strategies in an active learning framework.
By integrating trajectory-state-informed active learning, we demonstrate that more efficient and robust autonomous driving systems are possible.
arXiv Detail & Related papers (2024-05-15T02:54:11Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
We propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving.
We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos.
In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input.
In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only.
arXiv Detail & Related papers (2023-01-03T08:52:49Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Early Lane Change Prediction for Automated Driving Systems Using
Multi-Task Attention-based Convolutional Neural Networks [8.60064151720158]
Lane change (LC) is one of the safety-critical manoeuvres in highway driving.
reliably predicting such manoeuvre in advance is critical for the safe and comfortable operation of automated driving systems.
This paper proposes a novel multi-task model to simultaneously estimate the likelihood of LC manoeuvres and the time-to-lane-change.
arXiv Detail & Related papers (2021-09-22T13:59:27Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - The Importance of Balanced Data Sets: Analyzing a Vehicle Trajectory
Prediction Model based on Neural Networks and Distributed Representations [0.0]
We investigate the composition of training data in vehicle trajectory prediction.
We show that the models employing our semantic vector representation outperform the numerical model when trained on an adequate data set.
arXiv Detail & Related papers (2020-09-30T20:00:11Z) - Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context [152.0714518512966]
This work studies the problem of predicting the sequence of future actions for surround vehicles in real-world driving scenarios.
The first contribution is an automatic method to convert the trajectories recorded in real-world driving scenarios to action sequences with the help of HD maps.
The second contribution lies in applying the method to the well-known traffic agent tracking and prediction dataset Argoverse, resulting in 228,000 action sequences.
The third contribution is to propose a novel action sequence prediction method by integrating past positions and velocities of the traffic agents, map information and social context into a single end-to-end trainable neural network
arXiv Detail & Related papers (2020-04-29T14:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.