論文の概要: Gaze3P: Gaze-Based Prediction of User-Perceived Privacy
- arxiv url: http://arxiv.org/abs/2507.00596v1
- Date: Tue, 01 Jul 2025 09:26:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.556465
- Title: Gaze3P: Gaze-Based Prediction of User-Perceived Privacy
- Title(参考訳): Gaze3P: ユーザ認識プライバシのGazeベースの予測
- Authors: Mayar Elfares, Pascal Reisert, Ralf Küsters, Andreas Bulling,
- Abstract要約: Gaze3Pは、ユーザが認識したプライバシの調査を促進するために特別に設計された最初のデータセットです。
私たちのデータセットは、100人の参加者と1000人の刺激からの視線データで構成されており、様々なプライベートな属性と安全な属性を含んでいる。
Gaze3Pでは、人間の目から知覚されたプライバシーを暗黙的に、動的に予測する機械学習モデルを訓練します。
- 参考スコア(独自算出の注目度): 13.5969071961191
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Privacy is a highly subjective concept and perceived variably by different individuals. Previous research on quantifying user-perceived privacy has primarily relied on questionnaires. Furthermore, applying user-perceived privacy to optimise the parameters of privacy-preserving techniques (PPT) remains insufficiently explored. To address these limitations, we introduce Gaze3P -- the first dataset specifically designed to facilitate systematic investigations into user-perceived privacy. Our dataset comprises gaze data from 100 participants and 1,000 stimuli, encompassing a range of private and safe attributes. With Gaze3P, we train a machine learning model to implicitly and dynamically predict perceived privacy from human eye gaze. Through comprehensive experiments, we show that the resulting models achieve high accuracy. Finally, we illustrate how predicted privacy can be used to optimise the parameters of differentially private mechanisms, thereby enhancing their alignment with user expectations.
- Abstract(参考訳): プライバシーは極めて主観的な概念であり、異なる個人によって可変的に認識される。
ユーザの認識するプライバシの定量化に関するこれまでの研究は、主にアンケートに依存してきた。
さらに,プライバシ保護技術(PPT)のパラメータを最適化するために,ユーザの認識したプライバシを適用しても不十分である。
これらの制限に対処するために、Gaze3Pを紹介します。これは、ユーザが認識したプライバシに関する体系的な調査を促進するために特別に設計された、最初のデータセットです。
私たちのデータセットは、100人の参加者と1000人の刺激からの視線データで構成されており、様々なプライベートな属性と安全な属性を含んでいる。
Gaze3Pでは、人間の目から知覚されたプライバシーを暗黙的に、動的に予測する機械学習モデルを訓練します。
総合的な実験を通して、得られたモデルが高い精度を達成することを示す。
最後に、予測プライバシを用いて、差分的にプライベートなメカニズムのパラメータを最適化し、ユーザ期待との整合性を高める方法について説明する。
関連論文リスト
- Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
プライバシを保存するコンピュータビジョンは、機械学習と人工知能において重要な問題である。
本稿では,ビデオデータセット中の感性のある被験者を文脈内の合成アバターに置き換える匿名化パイプラインを提案する。
また、匿名化されていないがプライバシーに敏感な背景情報を保護するため、MaskDPを提案する。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Models Matter: Setting Accurate Privacy Expectations for Local and Central Differential Privacy [14.40391109414476]
局所モデルと中心モデルにおける差分プライバシーの新たな説明を設計・評価する。
我々は、プライバシー栄養ラベルのスタイルにおける結果に焦点を当てた説明が、正確なプライバシー期待を設定するための有望なアプローチであることに気付きました。
論文 参考訳(メタデータ) (2024-08-16T01:21:57Z) - PAC Privacy Preserving Diffusion Models [6.299952353968428]
拡散モデルは、高いプライバシーと視覚的品質の両方で画像を生成することができる。
しかし、特定のデータ属性の民営化において堅牢な保護を確保するといった課題が発生する。
PACプライバシー保護拡散モデル(PAC Privacy Preserving Diffusion Model)を導入する。
論文 参考訳(メタデータ) (2023-12-02T18:42:52Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Privacy-Preserving Matrix Factorization for Recommendation Systems using
Gaussian Mechanism [2.84279467589473]
本稿では,差分プライバシーフレームワークと行列因数分解に基づくプライバシ保護レコメンデーションシステムを提案する。
差分プライバシーは、プライバシを保存する機械学習アルゴリズムを設計するための強力で堅牢な数学的フレームワークであるため、敵が機密性の高いユーザー情報を抽出するのを防ぐことができる。
論文 参考訳(メタデータ) (2023-04-11T13:50:39Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
それぞれの入力特徴が個人のプライバシ損失に与える影響について検討する。
プライベートデータベース上でのクエリに対する我々のアプローチを実験的に評価する。
また、合成データにおけるニューラルネットワークトレーニングの文脈における知見についても検討する。
論文 参考訳(メタデータ) (2021-09-22T08:29:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。