A Diagrammatic Calculus for a Functional Model of Natural Language Semantics
- URL: http://arxiv.org/abs/2507.00782v2
- Date: Wed, 23 Jul 2025 12:07:49 GMT
- Title: A Diagrammatic Calculus for a Functional Model of Natural Language Semantics
- Authors: Matthieu Pierre Boyer,
- Abstract summary: We will formalize a category based type and effect system to represent the semantic difference between syntactically equivalent expressions.<n>We then construct a diagrammatic calculus to model parsing and handling of effects, providing a method to efficiently compute the denotations for sentences.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study a functional programming approach to natural language semantics, allowing us to increase the expressiveness of a more traditional denotation style. We will formalize a category based type and effect system to represent the semantic difference between syntactically equivalent expressions. We then construct a diagrammatic calculus to model parsing and handling of effects, providing a method to efficiently compute the denotations for sentences.
Related papers
- Relation-based Counterfactual Data Augmentation and Contrastive Learning for Robustifying Natural Language Inference Models [0.0]
We propose a method in which we use token-based and sentence-based augmentation methods to generate counterfactual sentence pairs.
We show that the proposed method can improve the performance and robustness of the NLI model.
arXiv Detail & Related papers (2024-10-28T03:43:25Z) - A Practical Method for Generating String Counterfactuals [106.98481791980367]
Interventions targeting the representation space of language models (LMs) have emerged as an effective means to influence model behavior.<n>We give a method to convert representation counterfactuals into string counterfactuals.<n>The resulting counterfactuals can be used to mitigate bias in classification through data augmentation.
arXiv Detail & Related papers (2024-02-17T18:12:02Z) - Syntax-semantics interface: an algebraic model [0.046040036610482664]
We show that methods adopted in the formulation of renormalization in theoretical physics are relevant to describe the extraction of meaning from syntactic expressions.
We answer some recent controversies about implications for generative linguistics of the current functioning of large language models.
arXiv Detail & Related papers (2023-11-10T17:12:09Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - A Comprehensive Empirical Evaluation of Existing Word Embedding
Approaches [5.065947993017158]
We present the characteristics of existing word embedding approaches and analyze them with regard to many classification tasks.
Traditional approaches mostly use matrix factorization to produce word representations, and they are not able to capture the semantic and syntactic regularities of the language very well.
On the other hand, Neural-network-based approaches can capture sophisticated regularities of the language and preserve the word relationships in the generated word representations.
arXiv Detail & Related papers (2023-03-13T15:34:19Z) - Tree-Based Representation and Generation of Natural and Mathematical
Language [77.34726150561087]
Mathematical language in scientific communications and educational scenarios is important yet relatively understudied.
Recent works on mathematical language focus either on representing stand-alone mathematical expressions, or mathematical reasoning in pre-trained natural language models.
We propose a series of modifications to existing language models to jointly represent and generate text and math.
arXiv Detail & Related papers (2023-02-15T22:38:34Z) - Categorical Tools for Natural Language Processing [0.0]
This thesis develops the translation between category theory and computational linguistics.
The three chapters deal with syntax, semantics and pragmatics.
The resulting functorial models can be composed to form games where equilibria are the solutions of language processing tasks.
arXiv Detail & Related papers (2022-12-13T15:12:37Z) - Oracle Linguistic Graphs Complement a Pretrained Transformer Language
Model: A Cross-formalism Comparison [13.31232311913236]
We examine the extent to which, in principle, linguistic graph representations can complement and improve neural language modeling.
We find that, overall, semantic constituency structures are most useful to language modeling performance.
arXiv Detail & Related papers (2021-12-15T04:29:02Z) - Plurality and Quantification in Graph Representation of Meaning [4.82512586077023]
Our graph language covers the essentials of natural language semantics using only monadic second-order variables.
We present a unification-based mechanism for constructing semantic graphs at a simple syntax-semantics interface.
The present graph formalism is applied to linguistic issues in distributive predication, cross-categorial conjunction, and scope permutation of quantificational expressions.
arXiv Detail & Related papers (2021-12-13T07:04:41Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
We analyze zero-shot learning by paraphrasing training examples of canonical utterances and programs from a grammar.
We propose bridging these gaps using improved grammars, stronger paraphrasers, and efficient learning methods.
Our model achieves strong performance on two semantic parsing benchmarks (Scholar, Geo) with zero labeled data.
arXiv Detail & Related papers (2021-10-15T21:41:16Z) - Image Synthesis via Semantic Composition [74.68191130898805]
We present a novel approach to synthesize realistic images based on their semantic layouts.
It hypothesizes that for objects with similar appearance, they share similar representation.
Our method establishes dependencies between regions according to their appearance correlation, yielding both spatially variant and associated representations.
arXiv Detail & Related papers (2021-09-15T02:26:07Z) - Understanding Synonymous Referring Expressions via Contrastive Features [105.36814858748285]
We develop an end-to-end trainable framework to learn contrastive features on the image and object instance levels.
We conduct extensive experiments to evaluate the proposed algorithm on several benchmark datasets.
arXiv Detail & Related papers (2021-04-20T17:56:24Z) - High-dimensional distributed semantic spaces for utterances [0.2907403645801429]
This paper describes a model for high-dimensional representation for utterance and text level data.
It is based on a mathematically principled and behaviourally plausible approach to representing linguistic information.
The paper shows how the implemented model is able to represent a broad range of linguistic features in a common integral framework of fixed dimensionality.
arXiv Detail & Related papers (2021-04-01T12:09:47Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
Influence functions explain the decisions of a model by identifying influential training examples.
We conduct a comparison between influence functions and common word-saliency methods on representative tasks.
We develop a new measure based on influence functions that can reveal artifacts in training data.
arXiv Detail & Related papers (2020-05-14T00:45:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.