Advancing Lung Disease Diagnosis in 3D CT Scans
- URL: http://arxiv.org/abs/2507.00993v1
- Date: Tue, 01 Jul 2025 17:44:53 GMT
- Title: Advancing Lung Disease Diagnosis in 3D CT Scans
- Authors: Qingqiu Li, Runtian Yuan, Junlin Hou, Jilan Xu, Yuejie Zhang, Rui Feng, Hao Chen,
- Abstract summary: We analyze the characteristics of 3D CT scans and remove non-lung regions, which helps the model focus on lesion-related areas.<n>Our model achieves a Macro F1 Score of 0.80 on the validation set of the Fair Disease Diagnosis Challenge.
- Score: 19.844531606142496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To enable more accurate diagnosis of lung disease in chest CT scans, we propose a straightforward yet effective model. Firstly, we analyze the characteristics of 3D CT scans and remove non-lung regions, which helps the model focus on lesion-related areas and reduces computational cost. We adopt ResNeSt50 as a strong feature extractor, and use a weighted cross-entropy loss to mitigate class imbalance, especially for the underrepresented squamous cell carcinoma category. Our model achieves a Macro F1 Score of 0.80 on the validation set of the Fair Disease Diagnosis Challenge, demonstrating its strong performance in distinguishing between different lung conditions.
Related papers
- High-Fidelity 3D Lung CT Synthesis in ARDS Swine Models Using Score-Based 3D Residual Diffusion Models [13.79974752491887]
Acute respiratory distress syndrome (ARDS) is a severe condition characterized by lung inflammation and respiratory failure, with a high mortality rate of approximately 40%.
Traditional imaging methods, such as chest X-rays, provide only two-dimensional views, limiting their effectiveness in fully assessing lung pathology.
This study synthesizes high-fidelity 3D lung CT from 2D generated X-ray images with associated physiological parameters using a score-based 3D residual diffusion model.
arXiv Detail & Related papers (2024-09-26T18:22:34Z) - Variational Autoencoders for Feature Exploration and Malignancy
Prediction of Lung Lesions [0.0]
Lung cancer is responsible for 21% of cancer deaths in the UK.
Recent studies have demonstrated the capability of AI methods for accurate and early diagnosis of lung cancer from routine scans.
This study investigates the application Variational Autoencoders (VAEs), a type of generative AI model, to lung cancer lesions.
arXiv Detail & Related papers (2023-11-27T11:12:33Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
We present an innovative model that harnesses the strengths of both convolutional neural networks and vision transformers.
Inspired by object detection in videos, we treat each 3D CT image as a video, individual slices as frames, and lung nodules as objects, enabling a time-series application.
arXiv Detail & Related papers (2023-10-05T07:48:55Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
Suppression of thoracic bone shadows on chest X-rays (CXRs) has been indicated to improve the diagnosis of pulmonary disease.
Previous approaches can be categorized as unsupervised physical and supervised deep learning models.
We propose a generalizable yet efficient workflow of two stages: (1) training pairs generation with GT bone shadows eliminated in minimization by a physical model in spatially transformed gradient fields.
(2) fully supervised image denoising network training on stage-one datasets for fast rib removal on incoming CXRs.
arXiv Detail & Related papers (2023-02-19T23:47:02Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
arXiv Detail & Related papers (2021-05-11T17:10:25Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
Pulmonary fibrosis is a chronic lung disease that causes irreparable lung tissue scarring and damage, resulting in progressive loss in lung capacity and no known cure.
We introduce Fibrosis-Net, a deep convolutional neural network design tailored for the prediction of pulmonary fibrosis progression from chest CT images.
arXiv Detail & Related papers (2021-03-06T02:16:41Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Lung Infection Quantification of COVID-19 in CT Images with Deep
Learning [41.35413216175024]
Deep learning system developed to automatically quantify infection regions of interest.
Human-in-the-loop strategy adopted to assist radiologists for infection region segmentation.
arXiv Detail & Related papers (2020-03-10T11:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.