論文の概要: Long-Sequence Memory with Temporal Kernels and Dense Hopfield Functionals
- arxiv url: http://arxiv.org/abs/2507.01052v1
- Date: Fri, 27 Jun 2025 15:57:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.800506
- Title: Long-Sequence Memory with Temporal Kernels and Dense Hopfield Functionals
- Title(参考訳): テンポラルカーネルと高密度ホップフィールド機能を用いた長期記憶
- Authors: Ahmed Farooq,
- Abstract要約: 長い系列ホップフィールドメモリモデルに関する初期の研究に基づいて、時間的依存関係を組み込むために時間的カーナル$K(m, k)$を提案する。
本手法が映画フレームの保存とシーケンシャル検索に有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study we introduce a novel energy functional for long-sequence memory, building upon the framework of dense Hopfield networks which achieves exponential storage capacity through higher-order interactions. Building upon earlier work on long-sequence Hopfield memory models, we propose a temporal kernal $K(m, k)$ to incorporate temporal dependencies, enabling efficient sequential retrieval of patterns over extended sequences. We demonstrate the successful application of this technique for the storage and sequential retrieval of movies frames which are well suited for this because of the high dimensional vectors that make up each frame creating enough variation between even sequential frames in the high dimensional space. The technique has applications in modern transformer architectures, including efficient long-sequence modeling, memory augmentation, improved attention with temporal bias, and enhanced handling of long-term dependencies in time-series data. Our model offers a promising approach to address the limitations of transformers in long-context tasks, with potential implications for natural language processing, forecasting, and beyond.
- Abstract(参考訳): 本研究では,高次相互作用による指数的記憶能力を実現する高密度ホップフィールドネットワークの枠組みを基盤として,長期記憶のための新しいエネルギー関数を提案する。
長周期ホップフィールドメモリモデルに関する初期の研究に基づいて、時間的依存関係を組み込んだ時間的カーナル$K(m, k)$を提案し、拡張シーケンス上のパターンの効率的なシーケンシャル検索を可能にする。
本研究では,高次元空間における偶数列フレーム間の十分なばらつきを生じさせる高次元ベクトルにより,この手法の映画フレームの保存とシーケンシャル検索に有効であることを示す。
この技術は、効率的なロングシーケンスモデリング、メモリ拡張、時間バイアスによる注意の向上、時系列データにおける長期依存関係の取り扱いの改善など、現代のトランスフォーマーアーキテクチャに応用されている。
我々のモデルは、自然言語処理や予測など、長文タスクにおけるトランスフォーマーの限界に対処するための有望なアプローチを提供する。
関連論文リスト
- Long-Context State-Space Video World Models [66.28743632951218]
本稿では、状態空間モデル(SSM)を活用して、計算効率を損なうことなく時間記憶を拡張する新しいアーキテクチャを提案する。
我々の設計の中心はブロックワイズSSMスキャン方式であり、時間記憶の拡張のために空間整合性を戦略的にトレードオフする。
メモリ迷路とMinecraftのデータセットの実験は、我々のアプローチが長距離メモリ保存のベースラインを超えたことを示している。
論文 参考訳(メタデータ) (2025-05-26T16:12:41Z) - UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba [7.594115034632109]
本稿では,新しい時系列予測フレームワークであるUmambaTSFを提案する。
U字型エンコーダ・デコーダ多層パーセプトロン(MLP)のマルチスケール特徴抽出機能とMambaのロングシーケンス表現を統合する。
UmambaTSFは、広く使用されているベンチマークデータセットで最先端のパフォーマンスと優れた汎用性を達成する。
論文 参考訳(メタデータ) (2024-10-15T04:56:43Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - MeMSVD: Long-Range Temporal Structure Capturing Using Incremental SVD [27.472705540825316]
本論文は、長時間の時間窓上での人間の行動を認識すること(最大数分)を目標とする長期映像理解について述べる。
本稿では,Singular Value Decomposition を用いて取得したメモリの低ランク近似に基づくアテンションベースのスキームの代替を提案する。
提案手法には2つの利点がある: (a) 複雑度を1桁以上削減し, (b) メモリベース計算の効率的な実装が可能である。
論文 参考訳(メタデータ) (2024-06-11T12:03:57Z) - Rough Transformers: Lightweight and Continuous Time Series Modelling through Signature Patching [46.58170057001437]
本稿では,入力シーケンスの連続時間表現で動作するトランスフォーマーモデルのバリエーションであるRough Transformerを紹介する。
様々な時系列関連タスクにおいて、Rough Transformersはベニラアテンションよりも常に優れています。
論文 参考訳(メタデータ) (2024-05-31T14:00:44Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
時系列予測(LTSF)は時系列分析において重要なフロンティアである。
本研究は, 分析的および実証的な証拠から, 分解が過剰なモデルインフレーションを包含する鍵であることを実証する。
興味深いことに、時系列データの本質的なダイナミクスに分解を合わせることで、提案モデルは既存のベンチマークより優れている。
論文 参考訳(メタデータ) (2024-01-22T13:15:40Z) - Blockwise Parallel Transformer for Large Context Models [70.97386897478238]
Blockwise Parallel Transformer (BPT) は、メモリコストを最小限に抑えるために、自己アテンションとフィードフォワードネットワーク融合のブロックワイズ計算である。
メモリ効率を維持しながら、長い入力シーケンスを処理することにより、BPTはバニラ変換器の32倍、以前のメモリ効率の4倍のトレーニングシーケンスを可能にする。
論文 参考訳(メタデータ) (2023-05-30T19:25:51Z) - Temporal Memory Relation Network for Workflow Recognition from Surgical
Video [53.20825496640025]
本研究では, 長期および多スケールの時間パターンを関連づける, エンドツーエンドの時間メモリ関係ネットワーク (TMNet) を提案する。
我々はこのアプローチを2つのベンチマーク手術ビデオデータセットで広範囲に検証した。
論文 参考訳(メタデータ) (2021-03-30T13:20:26Z) - Informer: Beyond Efficient Transformer for Long Sequence Time-Series
Forecasting [25.417560221400347]
長周期時系列予測(LSTF)は高い予測能力を必要とする。
最近の研究は、予測能力を高めるトランスフォーマーの可能性を示しています。
我々は3つの特徴を有するlstf用効率的なトランスフォーマーモデル,informerを設計した。
論文 参考訳(メタデータ) (2020-12-14T11:43:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。