Prompt Mechanisms in Medical Imaging: A Comprehensive Survey
- URL: http://arxiv.org/abs/2507.01055v1
- Date: Sat, 28 Jun 2025 03:06:25 GMT
- Title: Prompt Mechanisms in Medical Imaging: A Comprehensive Survey
- Authors: Hao Yang, Xinlong Liang, Zhang Li, Yue Sun, Zheyu Hu, Xinghe Xie, Behdad Dashtbozorg, Jincheng Huang, Shiwei Zhu, Luyi Han, Jiong Zhang, Shanshan Wang, Ritse Mann, Qifeng Yu, Tao Tan,
- Abstract summary: Deep learning offers transformative potential in medical imaging.<n>Yet its clinical adoption is frequently hampered by challenges such as data scarcity, distribution shifts, and the need for robust task generalization.<n>Prompt-based methodologies have emerged as a pivotal strategy to guide deep learning models.
- Score: 18.072753363565322
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep learning offers transformative potential in medical imaging, yet its clinical adoption is frequently hampered by challenges such as data scarcity, distribution shifts, and the need for robust task generalization. Prompt-based methodologies have emerged as a pivotal strategy to guide deep learning models, providing flexible, domain-specific adaptations that significantly enhance model performance and adaptability without extensive retraining. This systematic review critically examines the burgeoning landscape of prompt engineering in medical imaging. We dissect diverse prompt modalities, including textual instructions, visual prompts, and learnable embeddings, and analyze their integration for core tasks such as image generation, segmentation, and classification. Our synthesis reveals how these mechanisms improve task-specific outcomes by enhancing accuracy, robustness, and data efficiency and reducing reliance on manual feature engineering while fostering greater model interpretability by making the model's guidance explicit. Despite substantial advancements, we identify persistent challenges, particularly in prompt design optimization, data heterogeneity, and ensuring scalability for clinical deployment. Finally, this review outlines promising future trajectories, including advanced multimodal prompting and robust clinical integration, underscoring the critical role of prompt-driven AI in accelerating the revolution of diagnostics and personalized treatment planning in medicine.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models [52.2001050216955]
Existing methods aim to enhance the performance of Medical Vision Language Model (MedVLM) by adjusting model structure, fine-tuning with high-quality data, or through preference fine-tuning.<n>We propose an expert-in-the-loop framework named Expert-Controlled-Free Guidance (Expert-CFG) to align MedVLM with clinical expertise without additional training.
arXiv Detail & Related papers (2025-07-12T09:03:30Z) - DeepSelective: Interpretable Prognosis Prediction via Feature Selection and Compression in EHR Data [26.378114734793492]
We propose DeepSelective, a novel end to end deep learning framework for predicting patient prognosis using EHR data.<n>DeepSelective combines data compression techniques with an innovative feature selection approach, integrating custom-designed modules.<n>Our experiments demonstrate that DeepSelective not only enhances predictive accuracy but also significantly improves interpretability, making it a valuable tool for clinical decision-making.
arXiv Detail & Related papers (2025-04-15T15:04:39Z) - Doctor-in-the-Loop: An Explainable, Multi-View Deep Learning Framework for Predicting Pathological Response in Non-Small Cell Lung Cancer [0.6800826356148091]
Non-small cell lung cancer (NSCLC) remains a major global health challenge.<n>We propose Doctor-in-the-Loop, a novel framework that integrates expert-driven domain knowledge with explainable artificial intelligence techniques.<n>Our approach employs a gradual multi-view strategy, progressively refining the model's focus from broad contextual features to finer, lesion-specific details.
arXiv Detail & Related papers (2025-02-21T16:35:30Z) - Fast Medical Shape Reconstruction via Meta-learned Implicit Neural Representations [5.213304732451705]
Minimizing retrieval and processing times potentially enhances swift response and decision-making in critical scenarios.
Recent methods attempt to solve the medical shape reconstruction problem by utilizing implicit neural functions.
arXiv Detail & Related papers (2024-09-11T08:44:10Z) - Exploration of Attention Mechanism-Enhanced Deep Learning Models in the Mining of Medical Textual Data [3.22071437711162]
The research explores the utilization of a deep learning model employing an attention mechanism in medical text mining.
It aims to enhance the model's capability to identify essential medical information by incorporating deep learning and attention mechanisms.
arXiv Detail & Related papers (2024-05-23T00:20:14Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - RIDGE: Reproducibility, Integrity, Dependability, Generalizability, and Efficiency Assessment of Medical Image Segmentation Models [1.4675465116143782]
This paper introduces the RIDGE checklist to assess the Reproducibility, Integrity, Dependability, Generalizability, and Efficiency of deep learning-based medical image segmentation models.
The RIDGE checklist is not just a tool for evaluation but also a guideline for researchers striving to improve the quality and transparency of their work.
arXiv Detail & Related papers (2024-01-16T21:45:08Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.