Classification based deep learning models for lung cancer and disease using medical images
- URL: http://arxiv.org/abs/2507.01279v1
- Date: Wed, 02 Jul 2025 01:36:29 GMT
- Title: Classification based deep learning models for lung cancer and disease using medical images
- Authors: Ahmad Chaddad, Jihao Peng, Yihang Wu,
- Abstract summary: We introduce a novel deep convolutional neural network (CNN) model, named ResNet+, which is based on the established ResNet framework.<n>The experimental results show that ResNet+ model demonstrated remarkable accuracy/F1, reaching 98.14/98.14% on the LC25000 dataset and 99.25/99.13% on the IQ-OTH/NCCD dataset.
- Score: 2.0809985825763198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of deep learning (DL) in medical image analysis has significantly improved the ability to predict lung cancer. In this study, we introduce a novel deep convolutional neural network (CNN) model, named ResNet+, which is based on the established ResNet framework. This model is specifically designed to improve the prediction of lung cancer and diseases using the images. To address the challenge of missing feature information that occurs during the downsampling process in CNNs, we integrate the ResNet-D module, a variant designed to enhance feature extraction capabilities by modifying the downsampling layers, into the traditional ResNet model. Furthermore, a convolutional attention module was incorporated into the bottleneck layers to enhance model generalization by allowing the network to focus on relevant regions of the input images. We evaluated the proposed model using five public datasets, comprising lung cancer (LC2500 $n$=3183, IQ-OTH/NCCD $n$=1336, and LCC $n$=25000 images) and lung disease (ChestXray $n$=5856, and COVIDx-CT $n$=425024 images). To address class imbalance, we used data augmentation techniques to artificially increase the representation of underrepresented classes in the training dataset. The experimental results show that ResNet+ model demonstrated remarkable accuracy/F1, reaching 98.14/98.14\% on the LC25000 dataset and 99.25/99.13\% on the IQ-OTH/NCCD dataset. Furthermore, the ResNet+ model saved computational cost compared to the original ResNet series in predicting lung cancer images. The proposed model outperformed the baseline models on publicly available datasets, achieving better performance metrics. Our codes are publicly available at https://github.com/AIPMLab/Graduation-2024/tree/main/Peng.
Related papers
- MIC: Medical Image Classification Using Chest X-ray (COVID-19 and Pneumonia) Dataset with the Help of CNN and Customized CNN [0.0]
This study introduces a customized convolutional neural network (CCNN) for medical image classification.
The proposed CCNN was compared with a convolutional neural network (CNN) and other models that used the same dataset.
This research found that the Convolutional Neural Network (CCNN) achieved 95.62% validation accuracy and 0.1270 validation loss.
arXiv Detail & Related papers (2024-11-02T07:18:53Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.<n>This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - A novel method to enhance pneumonia detection via a model-level
ensembling of CNN and vision transformer [0.7499722271664147]
Pneumonia remains a leading cause of morbidity and mortality worldwide.
Deep learning has shown immense potential for pneumonia detection from Chest X-ray (CXR) imaging.
We developed a novel model fusing Convolution Neural networks (CNN) and Vision Transformer networks via model-level ensembling.
arXiv Detail & Related papers (2024-01-04T16:58:31Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - LCDctCNN: Lung Cancer Diagnosis of CT scan Images Using CNN Based Model [0.0]
We proposed a deep learning model-based Convolutional Neural Network framework for the early detection of lung cancer using CT scan images.
It achieved an accuracy of 92%, AUC of 98.21%, recall of 91.72%, and loss of 0.328.
arXiv Detail & Related papers (2023-04-10T18:47:20Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - MARL: Multimodal Attentional Representation Learning for Disease
Prediction [0.0]
Existing learning models often utilise CT-scan images to predict lung diseases.
These models are posed by high uncertainties that affect lung segmentation and visual feature learning.
We introduce MARL, a novel Multimodal Attentional Representation Learning model architecture.
arXiv Detail & Related papers (2021-05-01T17:47:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z) - Detection of Coronavirus (COVID-19) Associated Pneumonia based on
Generative Adversarial Networks and a Fine-Tuned Deep Transfer Learning Model
using Chest X-ray Dataset [4.664495510551646]
This paper presents a pneumonia chest x-ray detection based on generative adversarial networks (GAN) with a fine-tuned deep transfer learning for a limited dataset.
The dataset used in this research consists of 5863 X-ray images with two categories: Normal and Pneumonia.
arXiv Detail & Related papers (2020-04-02T08:14:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.