Age Sensitive Hippocampal Functional Connectivity: New Insights from 3D CNNs and Saliency Mapping
- URL: http://arxiv.org/abs/2507.01411v1
- Date: Wed, 02 Jul 2025 07:05:18 GMT
- Title: Age Sensitive Hippocampal Functional Connectivity: New Insights from 3D CNNs and Saliency Mapping
- Authors: Yifei Sun, Marshall A. Dalton, Robert D. Sanders, Yixuan Yuan, Xiang Li, Sharon L. Naismith, Fernando Calamante, Jinglei Lv,
- Abstract summary: We develop an interpretable deep learning framework to predict brain age from hippocampal functional connectivity analysis.<n>Key hippocampal-cortical connections are mapped, particularly with the precuneus, cuneus, posterior cingulate cortex, parahippocampal cortex, left superior parietal lobule, and right superior temporal sulcus.<n>Findings provide new insights into the functional mechanisms of hippocampal aging and demonstrate the power of explainable deep learning to uncover biologically meaningful patterns in neuroimaging data.
- Score: 55.27843586881593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grey matter loss in the hippocampus is a hallmark of neurobiological aging, yet understanding the corresponding changes in its functional connectivity remains limited. Seed-based functional connectivity (FC) analysis enables voxel-wise mapping of the hippocampus's synchronous activity with cortical regions, offering a window into functional reorganization during aging. In this study, we develop an interpretable deep learning framework to predict brain age from hippocampal FC using a three-dimensional convolutional neural network (3D CNN) combined with LayerCAM saliency mapping. This approach maps key hippocampal-cortical connections, particularly with the precuneus, cuneus, posterior cingulate cortex, parahippocampal cortex, left superior parietal lobule, and right superior temporal sulcus, that are highly sensitive to age. Critically, disaggregating anterior and posterior hippocampal FC reveals distinct mapping aligned with their known functional specializations. These findings provide new insights into the functional mechanisms of hippocampal aging and demonstrate the power of explainable deep learning to uncover biologically meaningful patterns in neuroimaging data.
Related papers
- Explainable Brain Age Gap Prediction in Neurodegenerative Conditions using coVariance Neural Networks [94.06526659234756]
Black-box machine learning approaches to brain age gap prediction have limited practical utility.<n>We apply the VNN-based approach to study brain age gap using cortical thickness features for various prevalent neurodegenerative conditions.<n>Our results reveal distinct anatomic patterns for brain age gap in Alzheimer's disease, frontotemporal dementia, and atypical Parkinsonian disorders.
arXiv Detail & Related papers (2025-01-02T19:37:09Z) - Disentangling Hippocampal Shape Variations: A Study of Neurological Disorders Using Mesh Variational Autoencoder with Contrastive Learning [3.978057697592975]
We leverage a Mesh Variational Autoencoder (VAE) enhanced with Supervised Contrastive Learning.
Our approach aims to improve interpretability by disentangling two distinct latent variables corresponding to age and the presence of diseases.
This research provides valuable insights into the relationship between neurological disorder and hippocampal shape changes in different age groups of MS populations.
arXiv Detail & Related papers (2024-03-31T20:08:23Z) - Early-stage detection of cognitive impairment by hybrid quantum-classical algorithm using resting-state functional MRI time-series [0.36468539946348383]
This study explores the application of a hybrid quantum-classical algorithm for classifying region-of-interest time-series data.
Classical one-dimensional convolutional layers are used together with quantum convolutional neural networks in our hybrid algorithm.
arXiv Detail & Related papers (2024-03-16T15:10:50Z) - Triamese-ViT: A 3D-Aware Method for Robust Brain Age Estimation from
MRIs [0.7770029179741429]
This paper introduces Triamese-ViT, an innovative adaptation of the ViT model for brain age estimation.
Tested on a dataset of 1351 MRI scans, Triamese-ViT achieves a Mean Absolute Error (MAE) of 3.84, a 0.9 Spearman correlation coefficient with chronological age, and a -0.29 Spearman coefficient correlation between the brain age gap and chronological age.
arXiv Detail & Related papers (2024-01-13T03:29:56Z) - An automated, geometry-based method for hippocampal shape and thickness
analysis [0.0]
Hippocampal shape changes are complex and cannot be fully characterized by a single summary metric such as hippocampal volume.
We propose an automated, geometry-based approach for the unfolding, point-wise correspondence, and local analysis of hippocampal shape features such as thickness and curvature.
arXiv Detail & Related papers (2023-02-01T16:46:46Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
We develop a novel attention mesh convolution model to predict cortical gyro-sulcal segmentation maps on individual brains.
Experiments show that the prediction performance via our model outperforms other state-of-the-art models.
arXiv Detail & Related papers (2022-05-21T14:08:53Z) - Predi\c{c}\~ao da Idade Cerebral a partir de Imagens de Resson\^ancia
Magn\'etica utilizando Redes Neurais Convolucionais [57.52103125083341]
Deep learning techniques for brain age prediction from magnetic resonance images are investigated.
The identification of biomarkers is useful for detecting an early-stage neurodegenerative process, as well as for predicting age-related or non-age-related cognitive decline.
The best result was obtained by the 2D model, which achieved a mean absolute error of 3.83 years.
arXiv Detail & Related papers (2021-12-23T14:51:45Z) - Relating transformers to models and neural representations of the
hippocampal formation [0.7734726150561088]
One of the most exciting and promising novel architectures, the Transformer neural network, was developed without the brain in mind.
We show that transformers, when equipped with recurrent position encodings, replicate the precisely tuned spatial representations of the hippocampal formation.
This work continues to bind computations of artificial and brain networks, offers a novel understanding of the hippocampal-cortical interaction, and suggests how wider cortical areas may perform complex tasks beyond current neuroscience models such as language comprehension.
arXiv Detail & Related papers (2021-12-07T23:14:07Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
We focus on the task of brain age regression from 3D brain Magnetic Resonance (MR) images using a Convolutional Neural Network, termed prediction model.
We implement a noise model which aims to add as much noise as possible to the input without harming the performance of the prediction model.
We test our method on 13,750 3D brain MR images from the UK Biobank, and our findings are consistent with the existing neuropathology literature.
arXiv Detail & Related papers (2021-08-11T18:08:09Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.