Relating transformers to models and neural representations of the
hippocampal formation
- URL: http://arxiv.org/abs/2112.04035v1
- Date: Tue, 7 Dec 2021 23:14:07 GMT
- Title: Relating transformers to models and neural representations of the
hippocampal formation
- Authors: James C.R. Whittington, Joseph Warren, Timothy E.J. Behrens
- Abstract summary: One of the most exciting and promising novel architectures, the Transformer neural network, was developed without the brain in mind.
We show that transformers, when equipped with recurrent position encodings, replicate the precisely tuned spatial representations of the hippocampal formation.
This work continues to bind computations of artificial and brain networks, offers a novel understanding of the hippocampal-cortical interaction, and suggests how wider cortical areas may perform complex tasks beyond current neuroscience models such as language comprehension.
- Score: 0.7734726150561088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many deep neural network architectures loosely based on brain networks have
recently been shown to replicate neural firing patterns observed in the brain.
One of the most exciting and promising novel architectures, the Transformer
neural network, was developed without the brain in mind. In this work, we show
that transformers, when equipped with recurrent position encodings, replicate
the precisely tuned spatial representations of the hippocampal formation; most
notably place and grid cells. Furthermore, we show that this result is no
surprise since it is closely related to current hippocampal models from
neuroscience. We additionally show the transformer version offers dramatic
performance gains over the neuroscience version. This work continues to bind
computations of artificial and brain networks, offers a novel understanding of
the hippocampal-cortical interaction, and suggests how wider cortical areas may
perform complex tasks beyond current neuroscience models such as language
comprehension.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
It has long been known in both neuroscience and AI that ''binding'' between neurons leads to a form of competitive learning.
We introduce Artificial rethinking together with arbitrary connectivity designs such as fully connected convolutional, or attentive mechanisms.
We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, uncertainty, and reasoning.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Expressivity of Spiking Neural Networks [15.181458163440634]
We study the capabilities of spiking neural networks where information is encoded in the firing time of neurons.
In contrast to ReLU networks, we prove that spiking neural networks can realize both continuous and discontinuous functions.
arXiv Detail & Related papers (2023-08-16T08:45:53Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - BrainBERT: Self-supervised representation learning for intracranial
recordings [18.52962864519609]
We create a reusable Transformer, BrainBERT, for intracranial recordings bringing modern representation learning approaches to neuroscience.
Much like in NLP and speech recognition, this Transformer enables classifying complex concepts, with higher accuracy and with much less data.
In the future, far more concepts will be decodable from neural recordings by using representation learning, potentially unlocking the brain like language models unlocked language.
arXiv Detail & Related papers (2023-02-28T07:40:37Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
Cortical prostheses are devices implanted in the visual cortex that attempt to restore lost vision by electrically stimulating neurons.
Currently, the vision provided by these devices is limited, and accurately predicting the visual percepts resulting from stimulation is an open challenge.
We propose to address this challenge by utilizing 'brain-like' convolutional neural networks (CNNs), which have emerged as promising models of the visual system.
arXiv Detail & Related papers (2022-09-27T17:33:19Z) - Deep Auto-encoder with Neural Response [8.797970797884023]
We propose a hybrid model, called deep auto-encoder with the neural response (DAE-NR)
The DAE-NR incorporates the information from the visual cortex into ANNs to achieve better image reconstruction and higher neural representation similarity between biological and artificial neurons.
Our experiments demonstrate that if and only if with the joint learning, DAE-NRs can (i.e., improve the performance of image reconstruction) and (ii. increase the representational similarity between biological neurons and artificial neurons.
arXiv Detail & Related papers (2021-11-30T11:44:17Z) - Training Deep Spiking Auto-encoders without Bursting or Dying Neurons
through Regularization [9.34612743192798]
Spiking neural networks are a promising approach towards next-generation models of the brain in computational neuroscience.
We apply end-to-end learning with membrane potential-based backpropagation to a spiking convolutional auto-encoder.
We show that applying regularization on membrane potential and spiking output successfully avoids both dead and bursting neurons.
arXiv Detail & Related papers (2021-09-22T21:27:40Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
We evolved weights in a biologically plausible recurrent neural network (RNN) using an evolutionary algorithm to replicate the behavior and neural activity observed in rats.
Our method demonstrates how the dynamic activity in evolved RNNs can capture interesting and complex cognitive behavior.
arXiv Detail & Related papers (2021-02-25T02:13:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.