Early-stage detection of cognitive impairment by hybrid quantum-classical algorithm using resting-state functional MRI time-series
- URL: http://arxiv.org/abs/2405.01554v1
- Date: Sat, 16 Mar 2024 15:10:50 GMT
- Title: Early-stage detection of cognitive impairment by hybrid quantum-classical algorithm using resting-state functional MRI time-series
- Authors: Junggu Choi, Tak Hur, Daniel K. Park, Na-Young Shin, Seung-Koo Lee, Hakbae Lee, Sanghoon Han,
- Abstract summary: This study explores the application of a hybrid quantum-classical algorithm for classifying region-of-interest time-series data.
Classical one-dimensional convolutional layers are used together with quantum convolutional neural networks in our hybrid algorithm.
- Score: 0.36468539946348383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Following the recent development of quantum machine learning techniques, the literature has reported several quantum machine learning algorithms for disease detection. This study explores the application of a hybrid quantum-classical algorithm for classifying region-of-interest time-series data obtained from resting-state functional magnetic resonance imaging in patients with early-stage cognitive impairment based on the importance of cognitive decline for dementia or aging. Classical one-dimensional convolutional layers are used together with quantum convolutional neural networks in our hybrid algorithm. In the classical simulation, the proposed hybrid algorithms showed higher balanced accuracies than classical convolutional neural networks under the similar training conditions. Moreover, a total of nine brain regions (left precentral gyrus, right superior temporal gyrus, left rolandic operculum, right rolandic operculum, left parahippocampus, right hippocampus, left medial frontal gyrus, right cerebellum crus, and cerebellar vermis) among 116 brain regions were found to be relatively effective brain regions for the classification based on the model performances. The associations of the selected nine regions with cognitive decline, as found in previous studies, were additionally validated through seed-based functional connectivity analysis. We confirmed both the improvement of model performance with the quantum convolutional neural network and neuroscientific validities of brain regions from our hybrid quantum-classical model.
Related papers
- Age Sensitive Hippocampal Functional Connectivity: New Insights from 3D CNNs and Saliency Mapping [55.27843586881593]
We develop an interpretable deep learning framework to predict brain age from hippocampal functional connectivity analysis.<n>Key hippocampal-cortical connections are mapped, particularly with the precuneus, cuneus, posterior cingulate cortex, parahippocampal cortex, left superior parietal lobule, and right superior temporal sulcus.<n>Findings provide new insights into the functional mechanisms of hippocampal aging and demonstrate the power of explainable deep learning to uncover biologically meaningful patterns in neuroimaging data.
arXiv Detail & Related papers (2025-07-02T07:05:18Z) - Spatiotemporal Learning of Brain Dynamics from fMRI Using Frequency-Specific Multi-Band Attention for Cognitive and Psychiatric Applications [5.199807441687141]
We introduce Multi-Band Brain Net (MBBN), a transformer-based framework that models frequency-specific brain dynamics from fMRI.
Trained on three large-scale neuroimaging cohorts totaling 45,951 individuals, MBBN reveals previously undetectable frequency-dependent network interactions.
MBBN up to 30.59% higher predictive accuracy than state-of-the-art methods.
arXiv Detail & Related papers (2025-03-30T10:56:50Z) - Application of quantum machine learning using quantum kernel algorithms on multiclass neuron M type classification [0.0]
This study is the first to propose the utilization of quantum systems to classify neuron morphologies.
We examined the influence of feature engineering on classification accuracy and found that quantum kernel methods achieved similar performance to classical methods.
arXiv Detail & Related papers (2025-02-10T09:23:32Z) - Explainable Brain Age Gap Prediction in Neurodegenerative Conditions using coVariance Neural Networks [94.06526659234756]
Black-box machine learning approaches to brain age gap prediction have limited practical utility.
We apply the VNN-based approach to study brain age gap using cortical thickness features for various prevalent neurodegenerative conditions.
Our results reveal distinct anatomic patterns for brain age gap in Alzheimer's disease, frontotemporal dementia, and atypical Parkinsonian disorders.
arXiv Detail & Related papers (2025-01-02T19:37:09Z) - Brain-JEPA: Brain Dynamics Foundation Model with Gradient Positioning and Spatiotemporal Masking [5.528773909620209]
Brain-JEPA is a brain dynamics foundation model with the Joint-Embedding Predictive Architecture (JEPA)
Brain-JEPA incorporates two innovative techniques: Brain Gradient Positioning and Spatiotemporal Masking.
arXiv Detail & Related papers (2024-09-28T17:06:06Z) - An ensemble framework approach of hybrid Quantum convolutional neural networks for classification of breast cancer images [2.1659912179830023]
Quantum neural networks are deemed suitable to replace classical neural networks in their ability to learn and scale up network models.
Medical image classification pertains well to applications in deep learning, particularly, convolutional neural networks.
arXiv Detail & Related papers (2024-09-24T10:43:27Z) - Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models [0.0]
We evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models.
Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy.
arXiv Detail & Related papers (2024-09-20T12:01:15Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification [9.637454568121425]
Recent studies show high accuracy in the classification of Alzheimer's disease using deep neural networks.
To identify changes in brain regions through concepts learned by the deep neural network for model validation.
arXiv Detail & Related papers (2024-04-16T09:56:08Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
We develop a novel attention mesh convolution model to predict cortical gyro-sulcal segmentation maps on individual brains.
Experiments show that the prediction performance via our model outperforms other state-of-the-art models.
arXiv Detail & Related papers (2022-05-21T14:08:53Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Markovian Quantum Neuroevolution for Machine Learning [0.0]
We introduce a quantum neuroevolution algorithm that autonomously finds near-optimal quantum neural networks for different machine-learning tasks.
In particular, we establish a one-to-one mapping between quantum circuits and directed graphs, and reduce the problem of finding the appropriate gate sequences.
arXiv Detail & Related papers (2020-12-30T12:42:38Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.