Deep Causal Generative Models with Property Control
- URL: http://arxiv.org/abs/2405.16219v1
- Date: Sat, 25 May 2024 13:07:27 GMT
- Title: Deep Causal Generative Models with Property Control
- Authors: Qilong Zhao, Shiyu Wang, Guangji Bai, Bo Pan, Zhaohui Qin, Liang Zhao,
- Abstract summary: We propose a novel deep generative framework called the Correlation-aware Causal Variational Auto-encoder (C2VAE)
C2VAE simultaneously recovers the correlation and causal relationships between properties using disentangled latent vectors.
- Score: 11.604321459670315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating data with properties of interest by external users while following the right causation among its intrinsic factors is important yet has not been well addressed jointly. This is due to the long-lasting challenge of jointly identifying key latent variables, their causal relations, and their correlation with properties of interest, as well as how to leverage their discoveries toward causally controlled data generation. To address these challenges, we propose a novel deep generative framework called the Correlation-aware Causal Variational Auto-encoder (C2VAE). This framework simultaneously recovers the correlation and causal relationships between properties using disentangled latent vectors. Specifically, causality is captured by learning the causal graph on latent variables through a structural causal model, while correlation is learned via a novel correlation pooling algorithm. Extensive experiments demonstrate C2VAE's ability to accurately recover true causality and correlation, as well as its superiority in controllable data generation compared to baseline models.
Related papers
- Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
We introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data.
We propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors.
Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
arXiv Detail & Related papers (2023-08-24T16:06:36Z) - Spurious Correlations and Where to Find Them [17.1264393170134]
Spurious correlations occur when a model learns unreliable features from the data.
We collect some of the commonly studied hypotheses behind the occurrence of spurious correlations.
We investigate their influence on standard ERM baselines using synthetic datasets generated from causal graphs.
arXiv Detail & Related papers (2023-08-21T21:06:36Z) - Causal Intervention for Abstractive Related Work Generation [16.7515135295061]
We propose a novel Causal Intervention Module for Related Work Generation (CaM)
We first model the relations among sentence order, document relation, and transitional content in related work generation using a causal graph.
We then use do-calculus to derive ordinary conditional probabilities and identify causal effects through CaM.
arXiv Detail & Related papers (2023-05-23T04:48:30Z) - De-Biasing Generative Models using Counterfactual Methods [0.0]
We propose a new decoder based framework named the Causal Counterfactual Generative Model (CCGM)
Our proposed method combines a causal latent space VAE model with specific modification to emphasize causal fidelity.
We explore how better disentanglement of causal learning and encoding/decoding generates higher causal intervention quality.
arXiv Detail & Related papers (2022-07-04T16:53:20Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z) - Learning Causal Models Online [103.87959747047158]
Predictive models can rely on spurious correlations in the data for making predictions.
One solution for achieving strong generalization is to incorporate causal structures in the models.
We propose an online algorithm that continually detects and removes spurious features.
arXiv Detail & Related papers (2020-06-12T20:49:20Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z) - Causal discovery of linear non-Gaussian acyclic models in the presence
of latent confounders [6.1221613913018675]
This paper proposes a causal functional model-based method called repetitive causal discovery (RCD) to discover the causal structure of observed variables affected by latent confounders.
RCD repeats inferring the causal directions between a small number of observed variables and determines whether the relationships are affected by latent confounders.
arXiv Detail & Related papers (2020-01-13T12:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.