Autoadaptive Medical Segment Anything Model
- URL: http://arxiv.org/abs/2507.01828v1
- Date: Wed, 02 Jul 2025 15:44:32 GMT
- Title: Autoadaptive Medical Segment Anything Model
- Authors: Tyler Ward, Meredith K. Owen, O'Kira Coleman, Brian Noehren, Abdullah-Al-Zubaer Imran,
- Abstract summary: We propose ADA-SAM (automated, domain-specific, and adaptive segment anything model), a novel multitask learning framework for medical image segmentation.<n>Our proposed method outperforms both fully-supervised and semi-supervised baselines by double digits in limited label settings.
- Score: 0.2359291431338925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation is a key task in the imaging workflow, influencing many image-based decisions. Traditional, fully-supervised segmentation models rely on large amounts of labeled training data, typically obtained through manual annotation, which can be an expensive, time-consuming, and error-prone process. This signals a need for accurate, automatic, and annotation-efficient methods of training these models. We propose ADA-SAM (automated, domain-specific, and adaptive segment anything model), a novel multitask learning framework for medical image segmentation that leverages class activation maps from an auxiliary classifier to guide the predictions of the semi-supervised segmentation branch, which is based on the Segment Anything (SAM) framework. Additionally, our ADA-SAM model employs a novel gradient feedback mechanism to create a learnable connection between the segmentation and classification branches by using the segmentation gradients to guide and improve the classification predictions. We validate ADA-SAM on real-world clinical data collected during rehabilitation trials, and demonstrate that our proposed method outperforms both fully-supervised and semi-supervised baselines by double digits in limited label settings. Our code is available at: https://github.com/tbwa233/ADA-SAM.
Related papers
- BiSeg-SAM: Weakly-Supervised Post-Processing Framework for Boosting Binary Segmentation in Segment Anything Models [6.74659948545092]
BiSeg-SAM is a weakly supervised prompting and boundary refinement network for the segmentation of polyps and skin lesions.<n>Our method demonstrates significant superiority over state-of-the-art (SOTA) methods when tested on five polyp datasets and one skin cancer dataset.
arXiv Detail & Related papers (2025-04-02T08:04:37Z) - Learnable Prompting SAM-induced Knowledge Distillation for Semi-supervised Medical Image Segmentation [47.789013598970925]
We propose a learnable prompting SAM-induced Knowledge distillation framework (KnowSAM) for semi-supervised medical image segmentation.<n>Our model outperforms the state-of-the-art semi-supervised segmentation approaches.
arXiv Detail & Related papers (2024-12-18T11:19:23Z) - Annotation-Efficient Task Guidance for Medical Segment Anything [0.31077024712075796]
Medical image segmentation is a key task in the imaging workflow, influencing many image-based decisions.<n>Traditional, fully-supervised segmentation models rely on large amounts of labeled training data, which can be an expensive, time-consuming, and error-prone process.<n>We propose SAM-Mix, a novel multitask learning framework for medical image segmentation.
arXiv Detail & Related papers (2024-12-11T17:47:00Z) - Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation [49.5901368256326]
We propose a novel Domain-Adaptive Prompt framework for fine-tuning the Segment Anything Model (termed as DAPSAM) in segmenting medical images.
Our DAPSAM achieves state-of-the-art performance on two medical image segmentation tasks with different modalities.
arXiv Detail & Related papers (2024-09-19T07:28:33Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - SamDSK: Combining Segment Anything Model with Domain-Specific Knowledge
for Semi-Supervised Learning in Medical Image Segmentation [27.044797468878837]
The Segment Anything Model (SAM) exhibits a capability to segment a wide array of objects in natural images.
We propose a novel method that combines the SAM with domain-specific knowledge for reliable utilization of unlabeled images.
Our work initiates a new direction of semi-supervised learning for medical image segmentation.
arXiv Detail & Related papers (2023-08-26T04:46:10Z) - SAM.MD: Zero-shot medical image segmentation capabilities of the Segment
Anything Model [1.1221592576472588]
We evaluate the zero-shot capabilities of the Segment Anything Model for medical image segmentation.
We show that SAM generalizes well to CT data, making it a potential catalyst for the advancement of semi-automatic segmentation tools.
arXiv Detail & Related papers (2023-04-10T18:20:29Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.