論文の概要: Decision-oriented Text Evaluation
- arxiv url: http://arxiv.org/abs/2507.01923v1
- Date: Wed, 02 Jul 2025 17:32:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:23:00.401645
- Title: Decision-oriented Text Evaluation
- Title(参考訳): 決定指向型テキスト評価
- Authors: Yu-Shiang Huang, Chuan-Ju Wang, Chung-Chi Chen,
- Abstract要約: 自然言語生成(NLG)は、ハイテイクなドメインにますます多くデプロイされている。
n-gramオーバーラップや文の妥当性などの本質的な評価手法では、実際の意思決定の有効性と弱い相関関係がある。
人・大規模言語モデル(LLM)決定結果への直接的影響を計測し,生成したテキストを評価するための意思決定指向フレームワークを提案する。
- 参考スコア(独自算出の注目度): 11.206532393178383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural language generation (NLG) is increasingly deployed in high-stakes domains, yet common intrinsic evaluation methods, such as n-gram overlap or sentence plausibility, weakly correlate with actual decision-making efficacy. We propose a decision-oriented framework for evaluating generated text by directly measuring its influence on human and large language model (LLM) decision outcomes. Using market digest texts--including objective morning summaries and subjective closing-bell analyses--as test cases, we assess decision quality based on the financial performance of trades executed by human investors and autonomous LLM agents informed exclusively by these texts. Our findings reveal that neither humans nor LLM agents consistently surpass random performance when relying solely on summaries. However, richer analytical commentaries enable collaborative human-LLM teams to outperform individual human or agent baselines significantly. Our approach underscores the importance of evaluating generated text by its ability to facilitate synergistic decision-making between humans and LLMs, highlighting critical limitations of traditional intrinsic metrics.
- Abstract(参考訳): 自然言語生成(NLG)は,n-gramオーバーラップや文の妥当性などの本質的な評価手法が,実際の意思決定の有効性と弱い相関関係にある。
人・大規模言語モデル(LLM)決定結果への直接的影響を計測し,生成したテキストを評価するための意思決定指向フレームワークを提案する。
市場ダイジェストテキスト(客観的な朝の要約や主観的なクローゼットベル分析を含む)を用いて、人的投資家や自律LLMエージェントが行う取引の財務成績に基づいて、意思決定の質を評価する。
以上の結果から,要約のみに頼っても,人間もLLMエージェントも無作為なパフォーマンスを常に上回っていないことが明らかとなった。
しかし、よりリッチな分析的な注釈により、協力的な人間とLLMチームは、個人またはエージェントのベースラインを大幅に上回ることができる。
提案手法は,人間とLLMの相乗的意思決定を促進する能力によって生成テキストを評価することの重要性を強調し,従来の内在的指標の限界を強調した。
関連論文リスト
- Monocle: Hybrid Local-Global In-Context Evaluation for Long-Text Generation with Uncertainty-Based Active Learning [63.531262595858]
分数的・対数的アプローチは、総合的な評価タスクを局所的なスコアリングタスクに分割し、続いて最終的なグローバルアセスメントを行う。
局所的およびグローバルな評価の両面での性能を高めるために,人間のアノテーションを活用するハイブリッド・イン・コンテキスト・ラーニング・アプローチを導入する。
最後に,人間のアノテーションに対するデータサンプルを効率的に選択する不確実性に基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2025-05-26T16:39:41Z) - Multi-Agent LLM Judge: automatic personalized LLM judge design for evaluating natural language generation applications [0.0]
大規模言語モデル(LLM)は、さまざまなドメインにまたがって素晴らしいパフォーマンスを示しているが、ドメイン固有の知識の不足、バイアス、幻覚といった問題に直面している。
単語重複やテキスト埋め込みに依存する従来の評価手法は、動的でオープンなテキスト生成を評価するのに必要なニュアンスドセマンティック情報を取得するには不十分である。
本稿では,様々な自然言語生成アプリケーション向けにパーソナライズされたLLM判断器を自動設計する動的マルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2025-04-01T09:36:56Z) - Potential and Perils of Large Language Models as Judges of Unstructured Textual Data [0.631976908971572]
本研究では,LLM-as-judgeモデルの有効性を検討した。
LLM-as-judgeは、人間に匹敵するスケーラブルなソリューションを提供するが、人間は微妙で文脈固有のニュアンスを検出するのに優れている。
論文 参考訳(メタデータ) (2025-01-14T14:49:14Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
大きな言語モデル(LLM)は、人間のような会話を生成できる。
BLEUやROUGEのような従来のメトリクスは、このような生成出力の微妙な意味と文脈的な豊かさを捉えるには不十分である。
本稿では,複数のLSM-as-judgesを活用することで,評価プロセスを自動化する基準誘導型判定手法を提案する。
論文 参考訳(メタデータ) (2024-08-17T16:01:45Z) - Evaluating the Performance of Large Language Models via Debates [43.40134389150456]
大規模言語モデル(LLM)は急速に進化し、様々な分野に影響を与えています。
パフォーマンス評価の現在のほとんどのアプローチは、固定されたドメイン固有の質問に基づいているか、あるいは人間の入力に依存している。
本稿では,LLM間の議論に基づく自動ベンチマークフレームワークを提案する。
この方法は、ドメイン知識だけでなく、議論的推論や矛盾認識といったスキルも評価する。
論文 参考訳(メタデータ) (2024-06-16T19:02:31Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は意思決定タスクを自動化するために使用される。
本稿では,LPMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを評価する。
さまざまな因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成します。
これらのベンチマークにより、LLMが事実を記憶したり、他のショートカットを見つけたりすることで、変化を正確に予測する能力を切り離すことができます。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
大規模言語モデル(LLM)が人間にとって信頼できる代替手段であるかどうかを解析する。
本稿では、従来のタスク(例えば、ストーリー生成)とアライメントタスク(例えば、数学推論)の両方について検討する。
LLM評価器は不要な基準を生成したり、重要な基準を省略することができる。
論文 参考訳(メタデータ) (2023-10-30T17:04:35Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
われわれはChatEvalと呼ばれるマルチエージェントの審判チームを構築し、異なるモデルから生成された応答の品質を自律的に議論し評価する。
分析の結果,ChatEvalは単なるテキストスコアリングを超越し,信頼性評価のための人間模倣評価プロセスを提供することがわかった。
論文 参考訳(メタデータ) (2023-08-14T15:13:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。