Detecting Fraud in Financial Networks: A Semi-Supervised GNN Approach with Granger-Causal Explanations
- URL: http://arxiv.org/abs/2507.01980v1
- Date: Wed, 25 Jun 2025 12:04:40 GMT
- Title: Detecting Fraud in Financial Networks: A Semi-Supervised GNN Approach with Granger-Causal Explanations
- Authors: Linh Nguyen, Marcel Boersma, Erman Acar,
- Abstract summary: Fraudulent activity in the financial industry costs billions annually.<n>This article proposes SAGE-FIN, a semi-supervised graph neural network (GNN) based approach with Granger causal explanations for Financial Interaction Networks.<n>We empirically validate the favorable performance of SAGE-FIN on a real-world dataset, Bipartite Edge-And-Node Attributed financial network (Elliptic++), with Granger-causal explanations for the identified fraudulent items without any prior assumption on the network structure.
- Score: 5.407319151576265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fraudulent activity in the financial industry costs billions annually. Detecting fraud, therefore, is an essential yet technically challenging task that requires carefully analyzing large volumes of data. While machine learning (ML) approaches seem like a viable solution, applying them successfully is not so easy due to two main challenges: (1) the sparsely labeled data, which makes the training of such approaches challenging (with inherent labeling costs), and (2) lack of explainability for the flagged items posed by the opacity of ML models, that is often required by business regulations. This article proposes SAGE-FIN, a semi-supervised graph neural network (GNN) based approach with Granger causal explanations for Financial Interaction Networks. SAGE-FIN learns to flag fraudulent items based on weakly labeled (or unlabelled) data points. To adhere to regulatory requirements, the flagged items are explained by highlighting related items in the network using Granger causality. We empirically validate the favorable performance of SAGE-FIN on a real-world dataset, Bipartite Edge-And-Node Attributed financial network (Elliptic++), with Granger-causal explanations for the identified fraudulent items without any prior assumption on the network structure.
Related papers
- GARG-AML against Smurfing: A Scalable and Interpretable Graph-Based Framework for Anti-Money Laundering [1.9461779294968458]
Money laundering is estimated to account for 2%-5% of the global GDP.<n>GARG-AML is a novel graph-based method that quantifies smurfing risk through a single interpretable metric.
arXiv Detail & Related papers (2025-06-04T11:30:37Z) - Deep Learning Approaches for Anti-Money Laundering on Mobile Transactions: Review, Framework, and Directions [51.43521977132062]
Money laundering is a financial crime that obscures the origin of illicit funds.<n>The proliferation of mobile payment platforms and smart IoT devices has significantly complicated anti-money laundering investigations.<n>This paper conducts a comprehensive review of deep learning solutions and the challenges associated with their use in AML.
arXiv Detail & Related papers (2025-03-13T05:19:44Z) - Corporate Fraud Detection in Rich-yet-Noisy Financial Graph [13.061327697762287]
Corporate fraud detection aims to automatically recognize companies that conduct wrongful activities such as fraudulent financial statements or illegal insider trading.<n>Previous learning-based methods fail to effectively integrate rich interactions in the company network.<n>We analyze 18-year financial records in China to form three graph datasets with fraud labels.
arXiv Detail & Related papers (2025-02-26T17:05:54Z) - A Label-Free Heterophily-Guided Approach for Unsupervised Graph Fraud Detection [60.09453163562244]
We propose a Heterophily-guided Unsupervised Graph fraud dEtection approach (HUGE) for unsupervised GFD.<n>In the estimation module, we design a novel label-free heterophily metric called HALO, which captures the critical graph properties for GFD.<n>In the alignment-based fraud detection module, we develop a joint-GNN architecture with ranking loss and asymmetric alignment loss.
arXiv Detail & Related papers (2025-02-18T22:07:36Z) - Exact Certification of (Graph) Neural Networks Against Label Poisoning [50.87615167799367]
We introduce an exact certification method for label flipping in Graph Neural Networks (GNNs)<n>We apply our method to certify a broad range of GNN architectures in node classification tasks.<n>Our work presents the first exact certificate to a poisoning attack ever derived for neural networks.
arXiv Detail & Related papers (2024-11-30T17:05:12Z) - Explainable AI for Fraud Detection: An Attention-Based Ensemble of CNNs, GNNs, and A Confidence-Driven Gating Mechanism [5.486205584465161]
This study presents a new stacking-based approach for CCF detection by adding two extra layers to the usual classification process.<n>In the attention layer, we combine soft outputs from a convolutional neural network (CNN) and a recurrent neural network (RNN) using the dependent ordered weighted averaging (DOWA) operator.<n>In the confidence-based layer, we select whichever aggregate (DOWA or IOWA) shows lower uncertainty to feed into a meta-learner.<n>Experiments on three datasets show that our method achieves high accuracy and robust generalization, making it effective for CCF detection.
arXiv Detail & Related papers (2024-10-01T09:56:23Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - Textual Data Mining for Financial Fraud Detection: A Deep Learning
Approach [0.0]
I present a deep learning approach to conduct a natural language processing (hereafter NLP) binary classification task for analyzing financial-fraud texts.
My methodology involved different kinds of neural network models, including Multilayer Perceptrons with Embedding layers, vanilla Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU)
My results bring significant implications for financial fraud detection as this work contributes to the growing body of research at the intersection of deep learning, NLP, and finance.
arXiv Detail & Related papers (2023-08-05T15:33:10Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - LaundroGraph: Self-Supervised Graph Representation Learning for
Anti-Money Laundering [5.478764356647437]
LaundroGraph is a novel self-supervised graph representation learning approach.
It provides insights to assist the anti-money laundering reviewing process.
To the best of our knowledge, this is the first fully self-supervised system within the context of AML detection.
arXiv Detail & Related papers (2022-10-25T21:58:02Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.