論文の概要: McBE: A Multi-task Chinese Bias Evaluation Benchmark for Large Language Models
- arxiv url: http://arxiv.org/abs/2507.02088v2
- Date: Thu, 07 Aug 2025 11:09:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 21:11:55.588542
- Title: McBE: A Multi-task Chinese Bias Evaluation Benchmark for Large Language Models
- Title(参考訳): McBE: 大規模言語モデルのためのマルチタスク中国のバイアス評価ベンチマーク
- Authors: Tian Lan, Xiangdong Su, Xu Liu, Ruirui Wang, Ke Chang, Jiang Li, Guanglai Gao,
- Abstract要約: 我々は4,077のバイアス評価インスタンスを含むマルチタスク中国語バイアス評価ベンチマーク(McBE)を提案する。
このデータセットは、広範なカテゴリカバレッジ、コンテンツの多様性、包括性の測定を提供する。
結果の詳細な分析を行い、大規模言語モデル(LLM)のバイアスに関する新たな洞察を提供する。
- 参考スコア(独自算出の注目度): 26.202296897643382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) are increasingly applied to various NLP tasks, their inherent biases are gradually disclosed. Therefore, measuring biases in LLMs is crucial to mitigate its ethical risks. However, most existing bias evaluation datasets focus on English and North American culture, and their bias categories are not fully applicable to other cultures. The datasets grounded in the Chinese language and culture are scarce. More importantly, these datasets usually only support single evaluation tasks and cannot evaluate the bias from multiple aspects in LLMs. To address these issues, we present a Multi-task Chinese Bias Evaluation Benchmark (McBE) that includes 4,077 bias evaluation instances, covering 12 single bias categories, 82 subcategories and introducing 5 evaluation tasks, providing extensive category coverage, content diversity, and measuring comprehensiveness. Additionally, we evaluate several popular LLMs from different series and with parameter sizes. In general, all these LLMs demonstrated varying degrees of bias. We conduct an in-depth analysis of results, offering novel insights into bias in LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)が様々なNLPタスクに適用されるにつれて、その固有のバイアスは徐々に明らかにされる。
したがって、LLMのバイアスを測定することは倫理的リスクを軽減するのに不可欠である。
しかし、既存のバイアス評価データセットのほとんどは、英語と北米の文化に焦点を当てており、それらのバイアスカテゴリーは他の文化に完全には適用されない。
中国語と文化に根ざしたデータセットは少ない。
さらに重要なのは、これらのデータセットは単一の評価タスクのみをサポートし、LLMの複数の側面からバイアスを評価することができないことだ。
これらの問題に対処するため、12の単一バイアスカテゴリ、82のサブカテゴリ、5つの評価タスクの導入、広範囲なカテゴリカバレッジ、コンテンツ多様性、包括性の測定を含む4,077のバイアス評価インスタンスを含むマルチタスク中国語バイアス評価ベンチマーク(McBE)を提案する。
さらに、異なる系列とパラメータサイズから、いくつかの人気のあるLCMを評価した。
一般に、これらのLLMは様々なバイアスの度合いを示した。
結果の詳細な分析を行い、LLMのバイアスに関する新たな洞察を提供する。
関連論文リスト
- Evaluating how LLM annotations represent diverse views on contentious topics [3.405231040967506]
生成型大規模言語モデル (LLM) は, 同一データセット内の同じ階層カテゴリーにおいて, 同一方向のバイアスを受ける傾向があることを示す。
自動データアノテーションタスクにLLMを用いた研究者や実践者にとっての意義について論じる。
論文 参考訳(メタデータ) (2025-03-29T22:53:15Z) - No LLM is Free From Bias: A Comprehensive Study of Bias Evaluation in Large Language Models [0.9620910657090186]
大規模言語モデル(LLM)は、異なる自然言語理解と生成タスクの性能を高めている。
我々は,中小LLMの集合を用いてベンチマークを統一的に評価する。
バイアス検出タスクをバイアスの異なる側面で行うための5つのプロンプト手法を提案する。
その結果, 選択したLLMは, Phi-3.5Bモデルが最も偏りが少ないため, いずれか一方あるいは他方の偏りに悩まされることが示唆された。
論文 参考訳(メタデータ) (2025-03-15T03:58:14Z) - Implicit Bias in LLMs: A Survey [2.07180164747172]
本稿では,大規模言語モデルにおける暗黙バイアスに関する既存の文献を包括的にレビューする。
まず、心理学における暗黙の偏見に関連する重要な概念、理論、方法を紹介する。
検出方法は,単語関連,タスク指向テキスト生成,意思決定の3つの主要なアプローチに分類する。
論文 参考訳(メタデータ) (2025-03-04T16:49:37Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models [58.57987316300529]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを処理するために、ますます多くデプロイされている。
LLMが示すバイアスを評価するために、研究者は最近、様々なデータセットを提案している。
我々は,様々な社会的グループやタスクにまたがる様々なバイアスをカバーした構成的評価ベンチマークであるCEBを提案する。
論文 参考訳(メタデータ) (2024-07-02T16:31:37Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
我々は、ある人口層に対する大きな言語モデルの暗黙の偏見を厳格に評価する。
心理測定の原則にインスパイアされた我々は,3つの攻撃的アプローチ,すなわち,軽視,軽視,指導を提案する。
提案手法は,LLMの内部バイアスを競合ベースラインよりも効果的に引き出すことができる。
論文 参考訳(メタデータ) (2024-06-20T06:42:08Z) - CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models [53.9835961434552]
本研究では,中国語に対する大規模言語モデル(LLM)の一般化性を評価するために,中国語命令追跡ベンチマーク(CIF-Bench)を導入する。
CIF-Benchは150のタスクと15,000の入力出力ペアで構成され、複雑な推論と中国の文化的ニュアンスをテストするためにネイティブスピーカーによって開発された。
データ汚染を軽減するため、データセットの半分しか公開せず、残りは非公開であり、スコア分散を最小限に抑えるために多種多様な命令を導入する。
論文 参考訳(メタデータ) (2024-02-20T16:02:12Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
大規模言語モデル(LLM)は、特定のタスクの自己フィードバックを通じてパフォーマンスを向上し、他のタスクを劣化させる。
我々は、LSMの自己バイアス(自称世代を好む傾向)を正式に定義する。
我々は、翻訳、制約付きテキスト生成、数学的推論の6つのLCMを解析する。
論文 参考訳(メタデータ) (2024-02-18T03:10:39Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
本稿では, 年齢や美しさなど, 研究の少ない, 連続的な, 次元に沿ったバイアスについて検討する。
実験心理学において, LLMは, 特定の社会集団に対して, 肯定的, 否定的感情の偏見を広く抱いているか, あるいは「美しいものは良い」バイアスと類似しているかを問う。
論文 参考訳(メタデータ) (2023-09-16T07:07:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。