論文の概要: Resolving Turbulent Magnetohydrodynamics: A Hybrid Operator-Diffusion Framework
- arxiv url: http://arxiv.org/abs/2507.02106v1
- Date: Wed, 02 Jul 2025 19:33:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:15.097331
- Title: Resolving Turbulent Magnetohydrodynamics: A Hybrid Operator-Diffusion Framework
- Title(参考訳): 乱流磁気流体力学の解法-ハイブリッド運転者拡散の枠組み-
- Authors: Semih Kacmaz, E. A. Huerta, Roland Haas,
- Abstract要約: ハイブリッド機械学習フレームワークは、100, 250, 500, 750, 1000, 3000, 10000$で$mathrmReで高忠実度シミュレーションの包括的なアンサンブルに基づいてトレーニングされている。
極度の乱流レベルでは、磁場の高波数進化を回復できる最初のサロゲートのままである。
- 参考スコア(独自算出の注目度): 0.2999888908665658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a hybrid machine learning framework that combines Physics-Informed Neural Operators (PINOs) with score-based generative diffusion models to simulate the full spatio-temporal evolution of two-dimensional, incompressible, resistive magnetohydrodynamic (MHD) turbulence across a broad range of Reynolds numbers ($\mathrm{Re}$). The framework leverages the equation-constrained generalization capabilities of PINOs to predict coherent, low-frequency dynamics, while a conditional diffusion model stochastically corrects high-frequency residuals, enabling accurate modeling of fully developed turbulence. Trained on a comprehensive ensemble of high-fidelity simulations with $\mathrm{Re} \in \{100, 250, 500, 750, 1000, 3000, 10000\}$, the approach achieves state-of-the-art accuracy in regimes previously inaccessible to deterministic surrogates. At $\mathrm{Re}=1000$ and $3000$, the model faithfully reconstructs the full spectral energy distributions of both velocity and magnetic fields late into the simulation, capturing non-Gaussian statistics, intermittent structures, and cross-field correlations with high fidelity. At extreme turbulence levels ($\mathrm{Re}=10000$), it remains the first surrogate capable of recovering the high-wavenumber evolution of the magnetic field, preserving large-scale morphology and enabling statistically meaningful predictions.
- Abstract(参考訳): 本稿では、PINOとスコアベース生成拡散モデルを組み合わせたハイブリッド機械学習フレームワークについて、Reynolds数(\mathrm{Re}$)の広い範囲にわたる2次元・非圧縮性・抵抗性磁気流体力学(MHD)乱流の全時空間進化をシミュレートする。
このフレームワークは、PINOの方程式制約付き一般化能力を利用してコヒーレントで低周波のダイナミクスを予測し、条件拡散モデルは高周波残差を確率的に補正し、完全に発達した乱流の正確なモデリングを可能にする。
この手法は、$\mathrm{Re} \in \{100, 250, 500, 750, 1000, 3000, 10000\}$で高忠実なシミュレーションの包括的アンサンブルに基づいて訓練され、以前は決定論的サロゲートに到達できなかった政権の最先端の精度を達成する。
$\mathrm{Re}=1000$と$3000$で、モデルはシミュレーションの後半の速度と磁場の完全なスペクトルエネルギー分布を忠実に再構成し、非ガウス統計、断続構造、および高い忠実度を持つクロスフィールド相関をキャプチャする。
極度の乱流レベル(\mathrm{Re}=10000$)では、磁場の高波数進化を回復し、大規模な形態を保ち、統計的に有意な予測を可能にする最初のサロゲートである。
関連論文リスト
- Physics-Based Machine Learning Closures and Wall Models for Hypersonic Transition-Continuum Boundary Layer Predictions [0.9320657506524149]
我々は、輸送モデルと境界条件を強化する物理制約付き機械学習フレームワークを開発する。
この2次元超音速平板流れをマッハ数とクヌーゼン数で評価した。
その結果,スキュート・ガウス分布関数壁モデルと組み合わせた無微量異方性粘度モデルにより,精度が大幅に向上した。
論文 参考訳(メタデータ) (2025-07-11T19:40:00Z) - Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants [0.0]
生成モデルは、テキスト、画像、ビデオなどの領域で顕著な成功を収めている。
本研究では, 生成モデルの流体力学への応用, 特に乱流シミュレーションについて検討する。
本稿では,物理制約を取り入れつつ確率的予測を可能にする補間子に基づく新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2025-04-08T09:29:01Z) - CoNFiLD-inlet: Synthetic Turbulence Inflow Using Generative Latent Diffusion Models with Neural Fields [7.646019826936172]
渦解流乱流シミュレーションは、複雑なマルチスケールの乱流構造を正確に再現する流入条件を必要とする。
従来のリサイクルベースの手法は計算コストのかかるシミュレーションに頼っているが、既存の合成インフロージェネレータは乱流の現実的なコヒーレント構造を再現できないことが多い。
本稿では, 遅延空間を統合し, 現実的な流入乱流を生成する新しいDLベースインフロージェネレータであるCoNFiLD-inletを提案する。
論文 参考訳(メタデータ) (2024-11-21T18:13:03Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
平均場ランゲヴィンダイナミクス(英: mean-field Langevin dynamics、MFLD)は、分布依存のドリフトを含むランゲヴィン力学の非線形一般化である。
近年の研究では、MFLDは測度空間で機能するエントロピー規則化された凸関数を地球規模で最小化することが示されている。
有限粒子近似,時間分散,勾配近似による誤差を考慮し,MFLDのカオスの均一時間伝播を示す枠組みを提供する。
論文 参考訳(メタデータ) (2023-06-12T16:28:11Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
パラメトリックダウンコンバージョンによって生成される絡み合ったツインビームは、画像指向アプリケーションで好まれるソースである。
本研究では,時間消費数値シミュレーションと非現実的な平面波ポンプ理論のギャップを埋めることを目的とした半解析モデルを提案する。
論文 参考訳(メタデータ) (2023-01-18T11:29:49Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Direct data-driven forecast of local turbulent heat flux in
Rayleigh-B\'{e}nard convection [0.0]
Prandtl number $rm Pr=7$とRayleigh number $rm Ra=107$の2次元乱流Rayleigh-B'enard対流
縮小潜在データ空間における流れデータの時間進行に2つの繰り返しニューラルネットワークを適用する。
12層を隠蔽した畳み込み自己エンコーダは、乱流データの次元を元の大きさの0.2%まで縮めることができる。
論文 参考訳(メタデータ) (2022-02-26T12:39:19Z) - Multi-fidelity Generative Deep Learning Turbulent Flows [0.0]
計算流体力学では、精度と計算コストの間に必然的なトレードオフがある。
本研究では,高忠実度乱流場の代理モデルとして,新しい多自由度深部生成モデルを提案する。
結果として生じるサロゲートは、物理的に正確な乱流実現を、高忠実度シミュレーションのそれよりも低い計算コストで生成することができる。
論文 参考訳(メタデータ) (2020-06-08T16:37:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。