Resolving Turbulent Magnetohydrodynamics: A Hybrid Operator-Diffusion Framework
- URL: http://arxiv.org/abs/2507.02106v1
- Date: Wed, 02 Jul 2025 19:33:57 GMT
- Title: Resolving Turbulent Magnetohydrodynamics: A Hybrid Operator-Diffusion Framework
- Authors: Semih Kacmaz, E. A. Huerta, Roland Haas,
- Abstract summary: Hybrid machine learning framework is trained on a comprehensive ensemble of high-fidelity simulations with $mathrmRe in 100, 250, 500, 750, 1000, 3000, 10000$.<n>At extreme turbulence levels, it remains the first surrogate capable of recovering the high-wavenumber evolution of the magnetic field.
- Score: 0.2999888908665658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a hybrid machine learning framework that combines Physics-Informed Neural Operators (PINOs) with score-based generative diffusion models to simulate the full spatio-temporal evolution of two-dimensional, incompressible, resistive magnetohydrodynamic (MHD) turbulence across a broad range of Reynolds numbers ($\mathrm{Re}$). The framework leverages the equation-constrained generalization capabilities of PINOs to predict coherent, low-frequency dynamics, while a conditional diffusion model stochastically corrects high-frequency residuals, enabling accurate modeling of fully developed turbulence. Trained on a comprehensive ensemble of high-fidelity simulations with $\mathrm{Re} \in \{100, 250, 500, 750, 1000, 3000, 10000\}$, the approach achieves state-of-the-art accuracy in regimes previously inaccessible to deterministic surrogates. At $\mathrm{Re}=1000$ and $3000$, the model faithfully reconstructs the full spectral energy distributions of both velocity and magnetic fields late into the simulation, capturing non-Gaussian statistics, intermittent structures, and cross-field correlations with high fidelity. At extreme turbulence levels ($\mathrm{Re}=10000$), it remains the first surrogate capable of recovering the high-wavenumber evolution of the magnetic field, preserving large-scale morphology and enabling statistically meaningful predictions.
Related papers
- Physics-Based Machine Learning Closures and Wall Models for Hypersonic Transition-Continuum Boundary Layer Predictions [0.9320657506524149]
We develop a physics-constrained machine learning framework that augments transport models and boundary conditions.<n>We evaluate these for two-dimensional supersonic flat-plate flows across a range of Mach and Knudsen numbers.<n>Our results show that a trace-free anisotropic viscosity model, paired with the skewed-Gaussian distribution function wall model, achieves significantly improved accuracy.
arXiv Detail & Related papers (2025-07-11T19:40:00Z) - Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants [0.0]
Generative models have demonstrated remarkable success in domains such as text, image, and video.<n>In this work, we explore the application of generative models to fluid dynamics, specifically for turbulence simulation.<n>We propose a novel generative model based on interpolants, which enables probabilistic forecasting while incorporating physical constraints.
arXiv Detail & Related papers (2025-04-08T09:29:01Z) - CoNFiLD-inlet: Synthetic Turbulence Inflow Using Generative Latent Diffusion Models with Neural Fields [7.646019826936172]
Eddy-resolving turbulence simulations require inflow conditions that accurately replicate the complex, multi-scale structures of turbulence.
Traditional recycling-based methods rely on computationally expensive simulations, while existing synthetic inflow generators often fail to reproduce realistic coherent structures of turbulence.
We present CoNFiLD-inlet, a novel DL-based inflow generator that integrates latent space to produce realistic, inflow turbulence.
arXiv Detail & Related papers (2024-11-21T18:13:03Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the Langevin dynamics that incorporates a distribution-dependent drift.
Recent works have shown that MFLD globally minimizes an entropy-regularized convex functional in the space of measures.
We provide a framework to prove a uniform-in-time propagation of chaos for MFLD that takes into account the errors due to finite-particle approximation, time-discretization, and gradient approximation.
arXiv Detail & Related papers (2023-06-12T16:28:11Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Direct data-driven forecast of local turbulent heat flux in
Rayleigh-B\'{e}nard convection [0.0]
Two-dimensional turbulent Rayleigh-B'enard convection flow at Prandtl number $rm Pr=7$ and Rayleigh number $rm Ra=107$.
Two recurrent neural networks are applied for the temporal advancement of flow data in the reduced latent data space.
Convolutional autoencoder with 12 hidden layers is able to reduce the dimensionality of the turbulence data to about 0.2 % of their original size.
arXiv Detail & Related papers (2022-02-26T12:39:19Z) - Multi-fidelity Generative Deep Learning Turbulent Flows [0.0]
In computational fluid dynamics, there is an inevitable trade off between accuracy and computational cost.
In this work, a novel multi-fidelity deep generative model is introduced for the surrogate modeling of high-fidelity turbulent flow fields.
The resulting surrogate is able to generate physically accurate turbulent realizations at a computational cost magnitudes lower than that of a high-fidelity simulation.
arXiv Detail & Related papers (2020-06-08T16:37:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.