Physics-Based Machine Learning Closures and Wall Models for Hypersonic Transition-Continuum Boundary Layer Predictions
- URL: http://arxiv.org/abs/2507.08986v1
- Date: Fri, 11 Jul 2025 19:40:00 GMT
- Title: Physics-Based Machine Learning Closures and Wall Models for Hypersonic Transition-Continuum Boundary Layer Predictions
- Authors: Ashish S. Nair, Narendra Singh, Marco Panesi, Justin Sirignano, Jonathan F. MacArt,
- Abstract summary: We develop a physics-constrained machine learning framework that augments transport models and boundary conditions.<n>We evaluate these for two-dimensional supersonic flat-plate flows across a range of Mach and Knudsen numbers.<n>Our results show that a trace-free anisotropic viscosity model, paired with the skewed-Gaussian distribution function wall model, achieves significantly improved accuracy.
- Score: 0.9320657506524149
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modeling rarefied hypersonic flows remains a fundamental challenge due to the breakdown of classical continuum assumptions in the transition-continuum regime, where the Knudsen number ranges from approximately 0.1 to 10. Conventional Navier-Stokes-Fourier (NSF) models with empirical slip-wall boundary conditions fail to accurately predict nonequilibrium effects such as velocity slip, temperature jump, and shock structure deviations. We develop a physics-constrained machine learning framework that augments transport models and boundary conditions to extend the applicability of continuum solvers in nonequilibrium hypersonic regimes. We employ deep learning PDE models (DPMs) for the viscous stress and heat flux embedded in the governing PDEs and trained via adjoint-based optimization. We evaluate these for two-dimensional supersonic flat-plate flows across a range of Mach and Knudsen numbers. Additionally, we introduce a wall model based on a mixture of skewed Gaussian approximations of the particle velocity distribution function. This wall model replaces empirical slip conditions with physically informed, data-driven boundary conditions for the streamwise velocity and wall temperature. Our results show that a trace-free anisotropic viscosity model, paired with the skewed-Gaussian distribution function wall model, achieves significantly improved accuracy, particularly at high-Mach and high-Knudsen number regimes. Strategies such as parallel training across multiple Knudsen numbers and inclusion of high-Mach data during training are shown to enhance model generalization. Increasing model complexity yields diminishing returns for out-of-sample cases, underscoring the need to balance degrees of freedom and overfitting. This work establishes data-driven, physics-consistent strategies for improving hypersonic flow modeling for regimes in which conventional continuum approaches are invalid.
Related papers
- Resolving Turbulent Magnetohydrodynamics: A Hybrid Operator-Diffusion Framework [0.2999888908665658]
Hybrid machine learning framework is trained on a comprehensive ensemble of high-fidelity simulations with $mathrmRe in 100, 250, 500, 750, 1000, 3000, 10000$.<n>At extreme turbulence levels, it remains the first surrogate capable of recovering the high-wavenumber evolution of the magnetic field.
arXiv Detail & Related papers (2025-07-02T19:33:57Z) - Stochastic and Non-local Closure Modeling for Nonlinear Dynamical Systems via Latent Score-based Generative Models [0.0]
We propose a latent score-based generative AI framework for learning, non-local closure models and laws in nonlinear dynamical systems.<n>This work addresses a key challenge of modeling complex multiscale dynamical systems without a clear scale separation.
arXiv Detail & Related papers (2025-06-25T19:04:02Z) - Flow Matching Meets PDEs: A Unified Framework for Physics-Constrained Generation [21.321570407292263]
We propose Physics-Based Flow Matching, a generative framework that embeds physical constraints, both PDE residuals and algebraic relations, into the flow matching objective.<n>We show that our approach yields up to an $8times$ more accurate physical residuals compared to FM, while clearly outperforming existing algorithms in terms of distributional accuracy.
arXiv Detail & Related papers (2025-06-10T09:13:37Z) - FORT: Forward-Only Regression Training of Normalizing Flows [85.66894616735752]
We revisit classical normalizing flows as one-step generative models with exact likelihoods.<n>We propose a novel, scalable training objective that does not require computing the expensive change of variable formula used in conventional maximum likelihood training.
arXiv Detail & Related papers (2025-06-01T20:32:27Z) - FLEX: A Backbone for Diffusion-Based Modeling of Spatio-temporal Physical Systems [51.15230303652732]
FLEX (F Low EXpert) is a backbone architecture for generative modeling of-temporal physical systems.<n>It reduces the variance of the velocity field in the diffusion model, which helps stabilize training.<n>It achieves accurate predictions for super-resolution and forecasting tasks using as few features as two reverse diffusion steps.
arXiv Detail & Related papers (2025-05-23T00:07:59Z) - Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
We propose a quantum Discrete Denoising Diffusion Probabilistic Model (QD3PM)<n>It enables joint probability learning through diffusion and denoising in exponentially large Hilbert spaces.<n>This paper establishes a new theoretical paradigm in generative models by leveraging the quantum advantage in joint distribution learning.
arXiv Detail & Related papers (2025-05-08T11:48:21Z) - Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants [0.0]
Generative models have demonstrated remarkable success in domains such as text, image, and video.<n>In this work, we explore the application of generative models to fluid dynamics, specifically for turbulence simulation.<n>We propose a novel generative model based on interpolants, which enables probabilistic forecasting while incorporating physical constraints.
arXiv Detail & Related papers (2025-04-08T09:29:01Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.<n>We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - Parametric model reduction of mean-field and stochastic systems via higher-order action matching [1.1509084774278489]
We learn models of population dynamics of physical systems that feature gradient and mean-field effects.
We show that our approach accurately predicts population dynamics over a wide range of parameters and outperforms state-of-the-art diffusion-based and flow-based modeling.
arXiv Detail & Related papers (2024-10-15T19:05:28Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
We introduce the generalized conditional flow matching (CFM) technique for continuous normalizing flows (CNFs)
CFM features a stable regression objective like that used to train the flow in diffusion models but enjoys the efficient inference of deterministic flow models.
A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference.
arXiv Detail & Related papers (2023-02-01T14:47:17Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.