論文の概要: OMS: On-the-fly, Multi-Objective, Self-Reflective Ad Keyword Generation via LLM Agent
- arxiv url: http://arxiv.org/abs/2507.02353v1
- Date: Thu, 03 Jul 2025 06:37:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:15.771945
- Title: OMS: On-the-fly, Multi-Objective, Self-Reflective Ad Keyword Generation via LLM Agent
- Title(参考訳): OMS: LLMエージェントによるオンザフライ、マルチオブジェクト、セルフリフレクティブ広告キーワード生成
- Authors: Bowen Chen, Zhao Wang, Shingo Takamatsu,
- Abstract要約: キーワード決定はスポンサー検索広告キャンペーンの成功に不可欠である。
OMS は On-the-fly というキーワード生成のためのフレームワークである(トレーニングデータを不要にし、オンラインのパフォーマンスを監視し、それに応じて適応する)。
ベンチマークや実世界の広告キャンペーンの実験は、OMSが既存の手法より優れていることを示している。
- 参考スコア(独自算出の注目度): 5.73568333009566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Keyword decision in Sponsored Search Advertising is critical to the success of ad campaigns. While LLM-based methods offer automated keyword generation, they face three major limitations: reliance on large-scale query-keyword pair data, lack of online multi-objective performance monitoring and optimization, and weak quality control in keyword selection. These issues hinder the agentic use of LLMs in fully automating keyword decisions by monitoring and reasoning over key performance indicators such as impressions, clicks, conversions, and CTA effectiveness. To overcome these challenges, we propose OMS, a keyword generation framework that is On-the-fly (requires no training data, monitors online performance, and adapts accordingly), Multi-objective (employs agentic reasoning to optimize keywords based on multiple performance metrics), and Self-reflective (agentically evaluates keyword quality). Experiments on benchmarks and real-world ad campaigns show that OMS outperforms existing methods; ablation and human evaluations confirm the effectiveness of each component and the quality of generated keywords.
- Abstract(参考訳): スポンサード検索広告におけるキーワード決定は、広告キャンペーンの成功に不可欠である。
LLMベースのメソッドは、自動キーワード生成を提供するが、大規模なクエリキーワードペアデータへの依存、オンラインマルチオブジェクトのパフォーマンス監視と最適化の欠如、キーワード選択における品質管理の弱さの3つの大きな制限に直面している。
これらの問題は、インプレッション、クリック、変換、CTAの有効性といった重要なパフォーマンス指標を監視し、推論することで、キーワード決定を完全に自動化するLLMのエージェント的使用を妨げる。
これらの課題を克服するために、OMSというキーワード生成フレームワークを提案する。これはオンザフライ(トレーニングデータを必要としない、オンラインのパフォーマンスを監視し、それに応じて適応する)、マルチオブジェクト(複数のパフォーマンス指標に基づいてキーワードを最適化するエージェント推論)、セルフリフレクティブ(キーワード品質を評価する)である。
ベンチマークや実世界の広告キャンペーンの実験では、OMSは既存の手法よりも優れており、アブレーションと人的評価により、各コンポーネントの有効性と生成されたキーワードの品質が確認されている。
関連論文リスト
- Hidden in Plain Sight: Evaluation of the Deception Detection Capabilities of LLMs in Multimodal Settings [14.065907685322097]
本稿では,Large Language Model (LLM) とLarge Multimodal Model (LMM) の自動偽造検出機能について,包括的に評価する。
実生活トライアル面接(RLTD)、対人的シナリオ(MU3D)、詐欺的レビュー(OpSpam)の3つの異なるデータセットを用いて、オープンソースおよび商用LLMの性能を評価する。
以上の結果から,LMMはクロスモーダルな手法を十分に活用するのに苦戦しているのに対し,微調整のLLMはテキスト偽造検出タスクにおいて最先端のパフォーマンスを実現することが示唆された。
論文 参考訳(メタデータ) (2025-06-11T06:12:50Z) - Multi-objective Aligned Bidword Generation Model for E-commerce Search Advertising [16.8420671443003]
検索システムは、ユーザクエリを最も関連性の高い広告とマッチングするという課題に対処する。
識別器,ジェネレータ,選好アライメントモジュールで構成される多目的整列バイドワード生成モデル(MoBGM)を提案する。
提案アルゴリズムは,オフラインおよびオンライン実験において,技術の現状を著しく上回っている。
論文 参考訳(メタデータ) (2025-06-04T10:57:18Z) - AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
エージェント-CQは、世代ステージと評価ステージの2つのステージから構成される。
CrowdLLMは、人間のクラウドソーシング判断をシミュレートして、生成された質問や回答を評価する。
ClariQデータセットの実験では、質問と回答の品質を評価するCrowdLLMの有効性が示されている。
論文 参考訳(メタデータ) (2024-10-25T17:06:27Z) - Large Language Models Are Self-Taught Reasoners: Enhancing LLM Applications via Tailored Problem-Solving Demonstrations [4.207253227315905]
我々は、カスタマイズされたデモを容易にする問題解決フレームワークSELF-TAUGHTを提案する。
複数選択質問の15のタスクにおいて、SELF-TAUGHTは強いベースラインよりも優れたパフォーマンスを達成する。
我々はSELF-TAUGHTの包括的解析を行い、既存のプロンプト法への一般化性について述べる。
論文 参考訳(メタデータ) (2024-08-22T11:41:35Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - Leveraging LLMs for Dialogue Quality Measurement [27.046917937460798]
大規模言語モデル(LLM)は、NLPタスク全体で堅牢なゼロショットと少数ショットの機能を提供する。
モデルサイズ,文脈内例,選択手法などの操作要因を考察し,CoT推論とラベル抽出手法について検討する。
この結果から,適切な微調整と十分な推論能力を有するLCMを自動対話評価に活用できることが示唆された。
論文 参考訳(メタデータ) (2024-06-25T06:19:47Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Enhancing Visual-Language Modality Alignment in Large Vision Language Models via Self-Improvement [102.22911097049953]
大規模視覚言語モデル(LVLM)は、視覚的質問応答および推論タスクにおいて印象的な結果を得た。
既存の手法は、しばしば外部モデルやデータに依存し、制御不能で不安定なアライメント結果をもたらす。
本稿では,外部依存を伴わない視覚的・言語的モダリティアライメントを向上させる自己改善フレームワークSIMAを提案する。
論文 参考訳(メタデータ) (2024-05-24T23:09:27Z) - Keyword Targeting Optimization in Sponsored Search Advertising:
Combining Selection and Matching [0.0]
最適なキーワードターゲティング戦略は、適切な人口に効果的に到達することを保証する。
本稿では,過去の広告パフォーマンス指標の不完全性から,キーワードターゲティングの問題に対処することを目的とする。
実験の結果, (a) BB-KSMは利益率において7つの基準線を上回り, (b) BB-KSMは予算の増加とともにその優位性を示した。
論文 参考訳(メタデータ) (2022-10-19T03:37:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。