OMS: On-the-fly, Multi-Objective, Self-Reflective Ad Keyword Generation via LLM Agent
- URL: http://arxiv.org/abs/2507.02353v1
- Date: Thu, 03 Jul 2025 06:37:55 GMT
- Title: OMS: On-the-fly, Multi-Objective, Self-Reflective Ad Keyword Generation via LLM Agent
- Authors: Bowen Chen, Zhao Wang, Shingo Takamatsu,
- Abstract summary: Keywords decision is critical to the success of Sponsored Search Advertising campaigns.<n>OMS is a framework for keyword generation that is On-the-fly (requires no training data, monitors online performance, and adapts accordingly)<n>Experiments on benchmarks and real-world ad campaigns show that OMS outperforms existing methods.
- Score: 5.73568333009566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Keyword decision in Sponsored Search Advertising is critical to the success of ad campaigns. While LLM-based methods offer automated keyword generation, they face three major limitations: reliance on large-scale query-keyword pair data, lack of online multi-objective performance monitoring and optimization, and weak quality control in keyword selection. These issues hinder the agentic use of LLMs in fully automating keyword decisions by monitoring and reasoning over key performance indicators such as impressions, clicks, conversions, and CTA effectiveness. To overcome these challenges, we propose OMS, a keyword generation framework that is On-the-fly (requires no training data, monitors online performance, and adapts accordingly), Multi-objective (employs agentic reasoning to optimize keywords based on multiple performance metrics), and Self-reflective (agentically evaluates keyword quality). Experiments on benchmarks and real-world ad campaigns show that OMS outperforms existing methods; ablation and human evaluations confirm the effectiveness of each component and the quality of generated keywords.
Related papers
- Hidden in Plain Sight: Evaluation of the Deception Detection Capabilities of LLMs in Multimodal Settings [14.065907685322097]
We present a comprehensive evaluation of the automated deception detection capabilities of Large Language Models (LLMs) and Large Multimodal Models (LMMs)<n>We assess the performance of both open-source and commercial LLMs on three distinct datasets: real life trial interviews (RLTD), instructed deception in interpersonal scenarios (MU3D), and deceptive reviews (OpSpam)<n>Our results show that fine-tuned LLMs achieve state-of-the-art performance on textual deception detection tasks, while LMMs struggle to fully leverage cross-modal cues.
arXiv Detail & Related papers (2025-06-11T06:12:50Z) - Multi-objective Aligned Bidword Generation Model for E-commerce Search Advertising [16.8420671443003]
Retrieval systems primarily address the challenge of matching user queries with the most relevant advertisements.<n>We propose a Multi-objective aligned Bidword Generation Model (MoBGM), which is composed of a discriminator, generator, and preference alignment module.<n>Our proposed algorithm significantly outperforms the state of the art in offline and online experiments.
arXiv Detail & Related papers (2025-06-04T10:57:18Z) - AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
AGENT-CQ consists of two stages: a generation stage and an evaluation stage.
CrowdLLM simulates human crowdsourcing judgments to assess generated questions and answers.
Experiments on the ClariQ dataset demonstrate CrowdLLM's effectiveness in evaluating question and answer quality.
arXiv Detail & Related papers (2024-10-25T17:06:27Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.<n>Existing evaluations tend to rely solely on a final success rate.<n>We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - Large Language Models Are Self-Taught Reasoners: Enhancing LLM Applications via Tailored Problem-Solving Demonstrations [4.207253227315905]
We present SELF-TAUGHT, a problem-solving framework, which facilitates customized demonstrations.
In 15 tasks of multiple-choice questions, SELF-TAUGHT achieves superior performance to strong baselines.
We conduct comprehensive analyses on SELF-TAUGHT, including its generalizability to existing prompting methods.
arXiv Detail & Related papers (2024-08-22T11:41:35Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.<n>We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.<n> Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Leveraging LLMs for Dialogue Quality Measurement [27.046917937460798]
Large language models (LLMs) show robust zeroshot and few-shot capabilities across NLP tasks.
Manipulating factors such as model size, in-context examples, and selection techniques, we examine "chain-of-thought" (CoT) reasoning and label extraction procedures.
Our results indicate that LLMs that are suitably fine-tuned and have sufficient reasoning capabilities can be leveraged for automated dialogue evaluation.
arXiv Detail & Related papers (2024-06-25T06:19:47Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Enhancing Visual-Language Modality Alignment in Large Vision Language Models via Self-Improvement [102.22911097049953]
Large vision-language models (LVLMs) have achieved impressive results in visual question-answering and reasoning tasks.<n>Existing methods often depend on external models or data, leading to uncontrollable and unstable alignment results.<n>We propose SIMA, a self-improvement framework that enhances visual and language modality alignment without external dependencies.
arXiv Detail & Related papers (2024-05-24T23:09:27Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks.
A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output.
This paper presents a comprehensive review of this emerging class of techniques.
arXiv Detail & Related papers (2023-08-06T18:38:52Z) - Robust Prompt Optimization for Large Language Models Against
Distribution Shifts [80.6757997074956]
Large Language Model (LLM) has demonstrated significant ability in various Natural Language Processing tasks.
We propose a new problem of robust prompt optimization for LLMs against distribution shifts.
This problem requires the prompt optimized over the labeled source group can simultaneously generalize to an unlabeled target group.
arXiv Detail & Related papers (2023-05-23T11:30:43Z) - Keyword Targeting Optimization in Sponsored Search Advertising:
Combining Selection and Matching [0.0]
An optimal keyword targeting strategy guarantees reaching the right population effectively.
This paper aims to address the keyword targeting problem, which is a challenging task because of the incomplete information of historical advertising performance indices.
Experimental results show that, (a) BB-KSM outperforms seven baselines in terms of profit; (b) BB-KSM shows its superiority as the budget increases.
arXiv Detail & Related papers (2022-10-19T03:37:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.