Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
- URL: http://arxiv.org/abs/2507.02403v1
- Date: Thu, 03 Jul 2025 07:56:54 GMT
- Title: Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
- Authors: Mufhumudzi Muthivhi, Terence L. van Zyl,
- Abstract summary: Wildlife re-identification aims to match individuals of the same species across different observations.<n>Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification.<n>This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.
Related papers
- Self-supervised Learning on Camera Trap Footage Yields a Strong Universal Face Embedder [48.03572115000886]
This study introduces a fully self-supervised approach to learning robust chimpanzee face embeddings from unlabeled camera-trap footage.<n>We train Vision Transformers on automatically mined face crops, eliminating the need for identity labels.<n>This work underscores the potential of self-supervised learning in biodiversity monitoring and paves the way for scalable, non-invasive population studies.
arXiv Detail & Related papers (2025-07-14T17:59:59Z) - CATALOG: A Camera Trap Language-guided Contrastive Learning Model [1.77513002450736]
We propose the Camera Trap Language-guided Contrastive Learning (CATALOG) model to address these issues.<n>Our approach combines multiple FMs to extract visual and textual features from camera-trap data and uses a contrastive loss function to train the model.<n>We evaluate CATALOG on two benchmark datasets and show that it outperforms previous state-of-the-art methods in camera-trap image recognition.
arXiv Detail & Related papers (2024-12-14T00:06:37Z) - Comparison of self-supervised in-domain and supervised out-domain transfer learning for bird species recognition [0.19183348587701113]
Transferring the weights of a pre-trained model to assist another task has become a crucial part of modern deep learning.
Our experiments will demonstrate the usefulness of in-domain models and datasets for bird species recognition.
arXiv Detail & Related papers (2024-04-26T08:47:28Z) - Self-Supervised Multi-Object Tracking For Autonomous Driving From
Consistency Across Timescales [53.55369862746357]
Self-supervised multi-object trackers have tremendous potential as they enable learning from raw domain-specific data.
However, their re-identification accuracy still falls short compared to their supervised counterparts.
We propose a training objective that enables self-supervised learning of re-identification features from multiple sequential frames.
arXiv Detail & Related papers (2023-04-25T20:47:29Z) - UniVIP: A Unified Framework for Self-Supervised Visual Pre-training [50.87603616476038]
We propose a novel self-supervised framework to learn versatile visual representations on either single-centric-object or non-iconic dataset.
Massive experiments show that UniVIP pre-trained on non-iconic COCO achieves state-of-the-art transfer performance.
Our method can also exploit single-centric-object dataset such as ImageNet and outperforms BYOL by 2.5% with the same pre-training epochs in linear probing.
arXiv Detail & Related papers (2022-03-14T10:04:04Z) - Multi-Task Self-Training for Learning General Representations [97.01728635294879]
Multi-task self-training (MuST) harnesses the knowledge in independent specialized teacher models to train a single general student model.
MuST is scalable with unlabeled or partially labeled datasets and outperforms both specialized supervised models and self-supervised models when training on large scale datasets.
arXiv Detail & Related papers (2021-08-25T17:20:50Z) - Beyond Tracking: Using Deep Learning to Discover Novel Interactions in
Biological Swarms [3.441021278275805]
We propose training deep network models to predict system-level states directly from generic graphical features from the entire view.
Because the resulting predictive models are not based on human-understood predictors, we use explanatory modules.
This represents an example of augmented intelligence in behavioral ecology -- knowledge co-creation in a human-AI team.
arXiv Detail & Related papers (2021-08-20T22:50:41Z) - Focus on the Positives: Self-Supervised Learning for Biodiversity
Monitoring [9.086207853136054]
We address the problem of learning self-supervised representations from unlabeled image collections.
We exploit readily available context data that encodes information such as the spatial and temporal relationships between the input images.
For the critical task of global biodiversity monitoring, this results in image features that can be adapted to challenging visual species classification tasks with limited human supervision.
arXiv Detail & Related papers (2021-08-14T01:12:41Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
We release a Large-Scale Object Detection benchmark for Autonomous driving, named as SODA10M, containing 10 million unlabeled images and 20K images labeled with 6 representative object categories.
To improve diversity, the images are collected every ten seconds per frame within 32 different cities under different weather conditions, periods and location scenes.
We provide extensive experiments and deep analyses of existing supervised state-of-the-art detection models, popular self-supervised and semi-supervised approaches, and some insights about how to develop future models.
arXiv Detail & Related papers (2021-06-21T13:55:57Z) - Deep learning with self-supervision and uncertainty regularization to
count fish in underwater images [28.261323753321328]
Effective conservation actions require effective population monitoring.
Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive.
Counting animals from such data is challenging, particularly when densely packed in noisy images.
Deep learning is the state-of-the-art method for many computer vision tasks, but it has yet to be properly explored to count animals.
arXiv Detail & Related papers (2021-04-30T13:02:19Z) - Visual Distant Supervision for Scene Graph Generation [66.10579690929623]
Scene graph models usually require supervised learning on large quantities of labeled data with intensive human annotation.
We propose visual distant supervision, a novel paradigm of visual relation learning, which can train scene graph models without any human-labeled data.
Comprehensive experimental results show that our distantly supervised model outperforms strong weakly supervised and semi-supervised baselines.
arXiv Detail & Related papers (2021-03-29T06:35:24Z) - Unsupervised Noisy Tracklet Person Re-identification [100.85530419892333]
We present a novel selective tracklet learning (STL) approach that can train discriminative person re-id models from unlabelled tracklet data.
This avoids the tedious and costly process of exhaustively labelling person image/tracklet true matching pairs across camera views.
Our method is particularly more robust against arbitrary noisy data of raw tracklets therefore scalable to learning discriminative models from unconstrained tracking data.
arXiv Detail & Related papers (2021-01-16T07:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.