論文の概要: CyberRAG: An agentic RAG cyber attack classification and reporting tool
- arxiv url: http://arxiv.org/abs/2507.02424v1
- Date: Thu, 03 Jul 2025 08:32:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:15.976869
- Title: CyberRAG: An agentic RAG cyber attack classification and reporting tool
- Title(参考訳): CyberRAG: エージェントRAGサイバー攻撃分類および報告ツール
- Authors: Francesco Blefari, Cristian Cosentino, Francesco Aurelio Pironti, Angelo Furfaro, Fabrizio Marozzo,
- Abstract要約: CyberRAGは、リアルタイムで分類、説明、構造化されたサイバー攻撃の報告を提供するモジュール型のエージェントベースのフレームワークである。
従来のRAGシステムとは異なり、CyberRAGは動的制御フローと適応推論を可能にするエージェント設計を採用している。
サイバーRAGは1クラスあたり94%以上の精度で評価され、最終分類の精度は94.92%に向上した。
- 参考スコア(独自算出の注目度): 1.0345929832241807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intrusion Detection and Prevention Systems (IDS/IPS) in large enterprises can generate hundreds of thousands of alerts per hour, overwhelming security analysts with logs that demand deep, rapidly evolving domain expertise. Conventional machine-learning detectors trim the alert volume but still yield high false-positive rates, while standard single-pass Retrieval-Augmented Generation (RAG) pipelines often retrieve irrelevant context and fail to justify their predictions. To overcome these shortcomings, we present CyberRAG, a modular, agent-based RAG framework that delivers real-time classification, explanation, and structured reporting for cyber-attacks. A central LLM agent orchestrates (i) a pool of fine-tuned specialized classifiers, each tailored to a distinct attack family; (ii) tool adapters for enrichment and alerting; and (iii) an iterative retrieval-and-reason loop that continuously queries a domain-specific knowledge base until the evidence is both relevant and self-consistent. Unlike traditional RAG systems, CyberRAG embraces an agentic design that enables dynamic control flow and adaptive reasoning. This agent-centric architecture refines its threat labels and natural-language justifications autonomously, reducing false positives and enhancing interpretability. The framework is fully extensible: new attack types can be supported by simply adding a classifier without retraining the core agent. CyberRAG has been evaluated achieving over 94% accuracy per class and pushing final classification accuracy to 94.92% through semantic orchestration. Generated explanations score up to 0.94 in BERTScore and 4.9/5 in GPT-4-based expert evaluation. These results show that agentic, specialist-oriented RAG can pair high detection accuracy with trustworthy, SOC-ready prose, offering a practical and scalable path toward semi-autonomous cyber-defence workflows.
- Abstract(参考訳): 大企業における侵入検知防止システム(IDS/IPS)は、1時間に数十万のアラートを発生させることができる。
従来の機械学習検出器は警告量をトリミングするが、それでも高い偽陽性率を発生させるが、通常の単一パスのRetrieval-Augmented Generation (RAG)パイプラインは無関係なコンテキストを検索し、予測を正当化することができない。
これらの欠点を克服するために、我々はCyberRAGという、リアルタイムな分類、説明、構造化されたサイバー攻撃の報告を提供するモジュール型のエージェントベースのRAGフレームワークを紹介した。
中枢性LLMエージェントのオーケストラ
一 細調整された特殊分類器のプールで、それぞれが別個の攻撃ファミリーに仕立てられたもの
(二)強化及び警報用ツールアダプタ、及び
三 証拠が適切かつ自己整合になるまで、ドメイン固有の知識ベースを継続的にクエリする反復的検索・推論ループ。
従来のRAGシステムとは異なり、CyberRAGは動的制御フローと適応推論を可能にするエージェント設計を採用している。
このエージェント中心アーキテクチャは、脅威ラベルと自然言語の正当化を自律的に洗練し、偽陽性を減らし、解釈可能性を高める。
フレームワークは完全に拡張可能で、コアエージェントを再トレーニングすることなく、単純に分類子を追加することで、新しい攻撃タイプをサポートすることができる。
CyberRAGはクラスごとに94%以上の精度で評価され、最終分類の精度はセマンティックオーケストレーションによって94.92%に向上した。
BERTScoreで0.94、GPT-4で4.9/5と評価された。
これらの結果から,エージェント,スペシャリスト指向RAGは信頼性の高いSOC対応の散文と高い検出精度を組み合わせ,半自律型サイバー防御ワークフローへの実践的でスケーラブルな経路を提供することができた。
関連論文リスト
- AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジリングフレームワークであるAgentVigilを提案する。
我々はAgentVigilをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation [31.231916859341865]
TrustRAGは、生成のために取得される前に、悪意のある、無関係なコンテンツを体系的にフィルタリングするフレームワークである。
TrustRAGは、検索精度、効率、攻撃抵抗を大幅に改善する。
論文 参考訳(メタデータ) (2025-01-01T15:57:34Z) - LLM-based Continuous Intrusion Detection Framework for Next-Gen Networks [0.7100520098029439]
このフレームワークはトランスフォーマーエンコーダアーキテクチャを採用しており、悪意のあるトラフィックと正当なトラフィックを区別するために、双方向に隠されたパターンをキャプチャする。
このシステムは、ガウス混合モデル(GMM)を高次元BERT埋め込みから派生したクラスタ特徴に活用することにより、未知の攻撃タイプを段階的に同定する。
新たな未知の攻撃クラスタの統合後も、このフレームワークは高いレベルで動作し続け、分類精度とリコールの両方で95.6%を達成している。
論文 参考訳(メタデータ) (2024-11-04T18:12:14Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
我々は、VisualWebArena上に現実的な脅威モデルを用いて、200の敵タスクと評価スクリプトを手動で作成する。
我々は,クロボックスフロンティアLMを用いた最新のエージェントを,リフレクションやツリーサーチを行うエージェントを含む,壊すことに成功している。
AREを使用して、新しいコンポーネントの追加に伴うロバスト性の変化を厳格に評価しています。
論文 参考訳(メタデータ) (2024-06-18T17:32:48Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Generative Adversarial Network-Driven Detection of Adversarial Tasks in
Mobile Crowdsensing [5.675436513661266]
クラウドセンシングシステムは、不特定かつユビキタスなプロパティの上に構築されるため、さまざまな攻撃に対して脆弱である。
以前の研究では、GANベースの攻撃は実験的に設計された攻撃サンプルよりも重大な破壊力を示すことが示唆されている。
本稿では,GANモデルを統合することにより,知的に設計された不正なセンシングサービス要求を検出することを目的とする。
論文 参考訳(メタデータ) (2022-02-16T00:23:25Z) - SAGE: Intrusion Alert-driven Attack Graph Extractor [4.530678016396476]
攻撃グラフ(AG)は、サイバー敵がネットワークに侵入する経路を評価するために使用される。
我々は、専門家の事前知識を必要とせず、侵入警報によって観察された行動に基づいてAGを自動的に学習することを提案する。
論文 参考訳(メタデータ) (2021-07-06T17:45:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。